
Limit cycles for fewnomial differential equations

Armengol Gasull
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Background and main results

Background

Consider the differential equation:

ż = Azk z̄ l + Bzmz̄n + Czp z̄q,

with k , l ,m, n, p, q non-negative integers and A,B,C ∈ C.

In the paper of Álvarez, Prohens and myelf it was proved that when ABC = 0
then its maximum number of limit cycles is 1.

In the 2015 paper, Chengzhi Li, J. Torregrosa, and myself it was proved
that in general there is no upper bound for its number of limit cycles.
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Background and main results

Background and aim of this talk

We rewrite the above results by using the following notation:

N = max(k + l ,m + n, p + q),
Hj(N) ∈ N ∪ {∞} denotes the maximum number of limit cycles of
the systems of the above type, with j monomials.

Theorem (AGP)

For N = 1, or N even, H2(N) = 0 and for N ≥ 3 odd, H2(N) = 1.

Theorem (GLT)

For N ≥ 3 odd, H3(N) ≥ N + 3

2
.

The aim of this talk is:

Improve the lower bound of H3(N).
Study H3(2).

The results are obtained in collaboration with Álvarez, Coll and Prohens.
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Background and main results

New results about H3(N)

Recall that it is known that for N odd, H3(N) ≥ (N + 3)/2.

Theorem

For N ≥ 4, H3(N) ≥ N − 3.

Theorem

For N = 4j − 1 and j ≥ 1, H3(N) ≥ N + 1.

All the above results give examples where each limit cycle surrounds a single
critical point. For limit cycles with a different configuration we prove:

Proposition

For N = 3j − 1, j ≥ 1 there are equations with three monomials and 2j
limit cycles (then H3(N) ≥ 2(N+1)

3 ). The limit cycles are formed by j
couples of two nested limit cycles surrounding, where each couple
surrounds a single critical point.
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Background and main results

Results about H3(2)

There are
(6

3

)
= 20 families of QS with 3 monomials. Among them it is

well-known that the linear systems,

ż = A + Bz + Cz̄ ,

and the homogenous QS,

ż = Az2 + Bzz̄ + Cz̄2

do not have limit cycles.

Hence it remains to study 18 families of QS, 9 of them with exactly one
non-linear term and 9 with exactly two non-linear terms.

Our results about their number of limit cycles are resumed in next theorem.
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Background and main results

Results about H3(2)

Theorem

Consider the differential equation

ż = AM1 + BM2 + CM3,

with A,B,C ∈ C and M1,M2 and M3, are 3 different fixed monomials
Mj ∈ {1, z , z̄ , z2, zz̄ , z̄2}, corresponding each one of the 18 families
described above. Then its number of limit cycles is given in next tables.
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Background and main results

Results about H3(2)

Monomials 1, z 1, z̄ z , z̄

z2 0 ≥ 1 ≥ 1

zz̄ 1 1 1

z̄2 0 0 0

Monomials z2, zz̄ z2, z̄2 zz̄ , z̄2

1 1 + 1 1 + 1 1 + 1

z ≥ 1 ≥ 2 ≥ 1

z̄ ≥ 1 ≥ 1 ≥ 1

The 1 + 1 means that the family has at most 2 limit cycles, that when they
exist they are not nested.
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Background and main results

Results about H3(2) and H3(3)

Corollary

It holds that H3(2) ≥ 2 and H3(3) ≥ 4.

We have also proved that the maximum number of limit cycles of both
families

ż = A + Bz̄ + Cz2 and ż = Az + Bz̄ + Cz2

coincide. As a consequence, the full case of 3-monomial QS with only
one non-linear monomial showed in the first table would be totally solved
if we were able to complete the study of the differential equation ż =
Az + Bz̄ + Cz2.

Monomials 1, z 1, z̄ z , z̄

z2 0 ≥ 1 ≥ 1

zz̄ 1 1 1

z̄2 0 0 0
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Ideas of the proofs of the known results

Known results

To prove the old results people has used Abelian integrals, index theory,
families of rotated vector fields, characterization of reversible centers, . . .

The most difficult part of the proof for the 2 monomials case (ABC = 0)
is to prove that many subcases do not have limit cycles and that the limit
cycle only appears for

ż = Az l+1z̄ l + Bzn+1z̄n,

that has odd degree.

In the general case the key point has been the study of the quotient of two
Abelian integrals and the presence of a rotational symmetry to produce limit
cycles.
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Ideas of the proofs of the known results

Some details of the proof of the 2015 result

Theorem (GLT)

For N ≥ 3 odd, H3(N) ≥ N + 3

2
.

The result is a consequence of the following more concrete result:

Theorem

For j ≥ 3, consider the 2-parameter family of systems

ż = (a + i) z − 5i

2
z̄ j−1 + (b + i) z j−1z̄ j−2,

with a, b ∈ R. Then there exist values for a and b for which the above
equation has at least j limit cycles.

Notice that N = 2j − 3 and the equation has j = (N + 3)/2 limit cycles.
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Ideas of the proofs of the known results

The differential equation

ż = (a + i) z − 5i

2
z̄ j−1 + (b + i) z j−1z̄ j−2,

has rotational invariance of 2π/j radians. When a = b = 0 the system is
Hamiltonian, with Hamiltonian function

H(r , θ) =
r2

2
− 5

2j
r j cos(j θ) +

r2(j−1)

2(j − 1)
− ρ̃,

where ρ̃ = (j−2)(j−5)
2j(j−1) 2

2
j−2 .
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Ideas of the proofs of the known results

Their phase portraits are:

Centers when a = b = 0 for the cases j = 3 and j = 6.

Write a = ε α and b = ε β, for α, β ∈ R with ε small enough. Then it
can be seen the first order Melnikov function associated to the perturbed
Hamiltonian has a simple zero and a limit cycle bifurcates from each period
annulus.
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Ideas of the proofs of the new results
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Ideas of the proofs of the new results

Proofs of the new results

The main tools for the proofs of the new results are:

Computation of Lyapunov quantities, even when the linear part of the
weak focus is not in normal form.

Use of some non-invertible tranformations to increment the number
of limit cycles.

Changes of variable to transform some quadratic systems into other
ones for which the maximum number of limit cycles is known.
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Ideas of the proofs of the new results

Theorem

For N ≥ 4, H3(N) ≥ N − 3.

PROOF: For each integer n ≥ 1, let us consider the differential equation
of degree N = n + 3 ≥ 4,

ż = (A + B)z − Azn+1 − Bzn+2z̄ = Az(1− zn) + Bz(1− z̄zn+1),

being A = n + 1 + a + i ,B = −n + i . The critical points of this equation
are z = 0 and the points z = wj such that wn

j = 1 for j = 1, . . . , n.

Observe that this equation is invariant by the change of the dependent
variable u = wn−1

j z for all j = 1, . . . , n. By this change, the critical point wj

of the original equation is transformed into the critical point u = 1. Hence,
varying j we get that all the critical points wj of the original equation have
the same character and stability as z = 1.
Let us study this critical point.
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Ideas of the proofs of the new results

It holds that

div(X )z=1 = −2na,

det(dX )z=1 = n|A|2 + n|B|2 + n(n + 1)|A||B| > 0.

Hence, if a = 0 the point z = 1 is a weak focus.

Let us compute its first Lyapunov quantity L1 and prove that L1 6= 0.

We perform the translation w = z−1 to move the critical point to the origin
and, for convenience, we change the sign of the vector field (t → −t). We
arrive to the differential equation

ẇ = −(A + B)(w + 1) + A(w + 1)n+1 + B(w + 1)n+2(w̄ + 1).

After some tedious computation we obtain that

L1 =
(5 + 2n − n2)n3

9n2 + 8n + 3
.

Notice that L1 > 0 for n = 1, 2, 3 and L1 < 0 for n ≥ 4. Hence, because of
the change of time, we know that the point z = 1 of the initial equation is
an attractor when n ≤ 3 and a repellor otherwise.
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Ideas of the proofs of the new results

Finally it is easy to see that an Andronov-Hopf bifurcation undergoes, mo-
ving slightly the parameter a and taking it with the suitable sign.

One gets a hyperbolic limit cycle born from the critical point (1, 0) of the
original differential equation.

From the symmetries of the initial differential equation, from each one of
the n non-zero critical points of the system a limit cycle is born at the same
time. Thus, the system has at least n = N − 3 hyperbolic limit cycles.

The limit cycles exist for |a| small enough and a < 0 when n = 1, 2, 3 and
are stable and also for |a| small enough and a > 0 when n ≥ 4 and are
unstable.

(UAB-CRM) LC for fewnomial differential equations 21 / 41



Ideas of the proofs of the new results

Computation of the first Lyapunov quantity

We use, in real or complex coordinates respectively, the general expression
of the first Lyapunov quantity L1 (sometimes also called V3) of the origin
when it is a weak focus when it is not written in any special normal form.

The expressions are given in next slides.

We thank our colleague and friend Joan Torregrosa who gave us the key
idea to compute it, and also all subsequent Lj , j ≥ 2, by using a clever mo-
dification of Lyapunov procedure to find a local suitable Lyapunov function.
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Ideas of the proofs of the new results

Theorem

Consider a C4 real planar differential equation{
ẋ = ux + vy +

∑3
j+k=2 aj ,kx

jyk + O4(x , y) = P(x , y),

ẏ = wx − uy +
∑3

j+k=2 bj ,kx
jyk + O4(x , y) = Q(x , y),

where w > 0, u2 + vw < 0, and O4(x , y) denotes terms of order at
least 4. Then the origin is a weak focus and its first Lyapunov quantity is

L1 =
L

4u2 + 3v2 − 2vw + 3w2
, where

L =
(
a1,1a2,0 − b0,2b1,1

)
(2u2 − vw)

+
(
a1,1b2,0 − 2a2,0

2 + a2,0b1,1 + 2b0,2b2,0 + b1,1
2
)
uv

+
(
2a0,2a2,0 + a0,2b1,1 + a1,1

2 + a1,1b0,2 − 2b0,2
2
)
uw

− b2,0 (2a2,0 + b1,1) v2 + a0,2 (a1,1 + 2b0,2)w2

−
(
2 (a2,1 + b1,2) u − (3a3,0 + b2,1) v + (a1,2 + 3b0,3)w

)
(u2 + vw).
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Ideas of the proofs of the new results

Theorem

Consider the C4 differential equation

ż = Rz + Sz̄ + Az2 + Bzz̄ + Cz̄2 + Dz3 + Ez2z̄ + Fzz̄2 + Gz̄3 + O4(z , z̄)

where all the involved parameters are complex, R = r1 + ir2, S = s1 + is2.
When r1 = 0, SS̄ − RR̄ < 0 and Im(R + S) > 0 the origin is a weak focus
and its first Lyapunov quantity is

L1 =
Im(M)

2RR̄ + SS̄
,

where

M =
(
2RE − S(3D + F̄ )

)
(RR̄ − SS̄) +

(
AB + 2ĀC + BC

)
S̄2

+
(
2AC − 2A2 + ĀB + B2 + B̄C

)
RS̄ − A2(S − S̄)(R − R̄)

− AB
(
2RR̄ + SS̄ + S̄2

)
.
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Ideas of the proofs of the new results

Recovering the classical expression of L1

ż = Rz + Sz̄ + Az2 + Bzz̄ + Cz̄2 + Dz3 + Ez2z̄ + Fzz̄2 + Gz̄3 + O4(z , z̄).

L1 =
Im(M)

2RR̄ + SS̄
, where

M =
(
2RE − S(3D + F̄ )

)
(RR̄ − SS̄) +

(
AB + 2ĀC + BC

)
S̄2

+
(
2AC − 2A2 + ĀB + B2 + B̄C

)
RS̄ − A2(S − S̄)(R − R̄)

−AB
(
2RR̄ + SS̄ + S̄2

)
.

Notice that when the origin is a weak focus written in normal form,
that is R = i and S = 0, then

L1 = Re(E )− Im(AB),

a well-known and nice expression of L1.
The bifurcation of Andronov–Hopf happens when instead of
r1 = Re(R) = 0 we take |r1| 6= 0 small enough and Re(R) Im(M) < 0.
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Ideas of the proofs of the new results

Computation of the first Lyapunov quantity.

IDEA OF THE COMPUTATIONS: Consider H(x , y) =
∑

k≥2 Hk(x , y),
where

H2(x , y) = −v

2
y2 − uxy +

w

2
x2,

and Hk are homogeneous polynomials of degree k. Notice that H2 is a first
integral of the linear part of the system which corresponds to a center and
it is positive definite.

Then this small variation of the Lyapunov’s method consists in proving that
there exist Hk , k ≥ 3 (not unique), such that

Hx(x , y)P(x , y) + Q(x , y)Hy (x , y) =
M∑

m=1

Lm(x2 + y2)m+1 + O2M+3(x , y),

for a suitable M, where recall that HxP + HyQ = Ḣ.

The expressions Lm are the Lyapunov quantities.
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Ideas of the proofs of the new results

Proof of the other results about H3(N)

Theorem

For N ≥ 4j − 1 and j ≥ 1, H3(N) ≥ N + 1.

The proof of the theorem starts with a cubic system (N = 3) with 4
limit cycles each one of them surrounding a single critical point.

Proposition

For N = 3j − 1, j ≥ 1 there are equations with three monomials and 2j
limit cycles (then H3(N) ≥ 2(N+1)

3 ). The limit cycles are formed by j
couples of two nested limit cycles surrounding, where each couple
surrounds a single critical point.

The proof of the proposition starts by bifurcating 2 limit cycles from a
weak focus of a quadratic system (N = 2) by a codimension two
Andronov-Hopf bifurcation.
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Ideas of the proofs of the new results

Study of some quadratic cases

All examples with limit cycles (the lower bounds) of both tables are
realized via Andronov-Hopf type bifurcations. We skip the details.

Let us prove for instance the red cases of next tables:

Monomials 1, z 1, z̄ z , z̄

z2 0 ≥ 1 ≥ 1

zz̄ 1 1 1

z̄2 0 0 0

Monomials z2, zz̄ z2, z̄2 zz̄ , z̄2

1 1 + 1 1 + 1 1 + 1

z ≥ 1 ≥ 2 ≥ 1

z̄ ≥ 1 ≥ 1 ≥ 1
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Ideas of the proofs of the new results

Study of some quadratic cases

Monomials 1, z 1, z̄ z , z̄

z̄2 0 0 0

This result is a straightforward consequence of Bendixson–Dulac criterion
because if ż = F (z , z̄) the divergence of the associated vector field is

2 Re

(
∂

∂z
F (z , z̄)

)
,

and for the differential equations

ż = A + Bz + Cz̄2, ż = A + Bz̄ + Cz̄2, ż = Az + Bz̄ + Cz̄2,

the respective divergences are 2 Re(B), 0 and 2 Re(A). Because they do not
change sign, the differential equations do not have limit cycles.
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Ideas of the proofs of the new results

Study of some quadratic cases

Monomials z2, zz̄ z2, z̄2 zz̄ , z̄2

1 1 + 1 1 + 1 1 + 1

The proof is based on next result, proved in 1981 by Suo Guangjian and
published in Chinese. We include here a proof inspired by the one of the
original paper.

Theorem (Suo Guangjian)

The system
ż = A + Bz2 + Czz̄ + Dz̄2

either does not have limit cycles or it has exactly two limit cycles, γ and
−γ. Moreover, in this latter case they are hyperbolic, with different
stabilities and each one of them surrounds a different critical point.
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Ideas of the proofs of the new results

A preliminary result

The following theorem is a well-known result on QS. We state next version
due to Coppel:

Theorem

Suppose a QS satisfies one of the following conditions:

it has an invariant straight line,

the highest degree terms are proportional,

Then, the QS has at most one limit cycle and when it exists it is
hyperbolic.
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Ideas of the proofs of the new results

Proofs without words

Armengol Gasull 11

7 Partició d’un quadrat en quadrats diferents

Armengol Gasull 23

obtenim tres cercles. En el cas de l’esfera, usant el Teorema de Pitàgores,
tenim un radi

√
R2 − d2 , en el cas del con un radi d i en el del cilindre un radi

R. Per tant, les àrees de les tres seccions, d’esquerra a dreta, són: Sesf :=
π(R2 − d2), Scon := πd2 i Scil = πR2. Així, es compleix Sesf + Scon = Scil.
Com a conseqüència

Volum de l’esfera
2

+ Volum del con = Volum del cilindre.

Per tant, sabent com calcular el volum d’un con i d’un cilindre, ja podem
calcular el volum V de l’esfera a partir de la igualtat anterior:

V

2
+
πR3

3
= πR3.

Obtenim que V = 4π R3/3.

3.3 Quadrats i més quadrats

No és senzill dividir un quadrat en un nombre finit de quadrats més petits,
tots disjunts i diferents, vegeu [29, Cap. 2]. Aquestes construccions es poden
relacionar amb el disseny de certes xarxes elèctriques, vegeu [12]. A l’esquerra
de la Figura 8, donem un quadrat de mida 112×112 subdividit en 21 quadrats
més petits i diferents, tots amb costats enters. Va ser trobat l’any 1978
per Duijvestijn i s’ha demostrat que és el més senzill possible amb aquestes
característiques. El mateix problema però començant amb un rectangle té
solucions més simples, vegeu de nou la mateixa figura, on es mostra un
rectangle 33× 32, trobat l’any 1925 per Moroń, dividit en 9 peces quadrades
diferents, amb costats enters. També se sap que aquesta solució és minimal.

18

1

15

14
10 9

4
7 8

Figura 8: Quadrat i rectangle dividits en quadrats diferents.

El que és força curiós és que cap prisma rectangular amb costats sencers
es pot dividir en un nombre finit de cubs més petits, tots diferents. Anem
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seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.
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Ideas of the proofs of the new results

A proof without words of Guangjian’s result

ż = A + Bz2 + Czz̄ + Dz̄2.

⇓{
ẋ = a + a2,0x

2 + a1,1xy + a0,2y
2,

ẏ = b + b2,0x
2 + b1,1xy + b0,2y

2.

⇓ (x0, y0) −→ (1, 0){
ẋ = a− ax2 + a1,1xy + a0,2y

2,

ẏ = b − bx2 + b1,1xy + b0,2y
2.

⇓ A “rotation”{
ẋ = a− ax2 + a1,1xy ,

ẏ = b − bx2 + b1,1xy + b0,2y
2.

⇓
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Ideas of the proofs of the new results

A proof without words of Guangjian’s result

{
ẋ = a− ax2 + a1,1xy ,

ẏ = b − bx2 + b1,1xy + b0,2y
2.

⇓{
ẋ = 1− x2 + a1,1xy ,

ẏ = b − bx2 + b1,1xy + b0,2y
2.

⇓{
ẋ = 1− x2 + xy ,

ẏ = b − bx2 + b1,1xy + b0,2y
2.

⇓ (X = x2, Y = 1− x2 + xy)
X ′ = 2XY ,

Y ′ = b0,2 + (b − 2 b0,2 − b1,1)X − (2 b0,2 + 1)Y + (−b + b0,2 + b1,1)X 2

+ (2 b0,2 + b1,1 − 1)XY + (b0,2 + 1)Y 2.
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Ideas of the proofs of the new results

Figure from: Counting configurations of limit cycles and centers, A. Gasull, A. Guillamon, V. Mañosa, 2023.

Thank you very much for your attention....

... but this is not the end
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Happy 60th birthday

A strong relation with Lleida group

All started with the visits of Jaume Llibre and myself to Javier Chavarriga.

Very soon Jaume Giné joined us.

Along the years we have had a very fruitful collaboration.
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Happy 60th birthday

Many joint experiences

(UAB-CRM) LC for fewnomial differential equations 38 / 41



Happy 60th birthday

Many joint experiences

(UAB-CRM) LC for fewnomial differential equations 39 / 41



Happy 60th birthday

Many joint experiences

(UAB-CRM) LC for fewnomial differential equations 40 / 41



Happy 60th birthday

Feliç 60 aniversari, Jaume!

Luminy 1997 Cádiz 2018

Encara que ja no som gaire joves, espero poder
mantenir la nostra col·laboració molts més anys!
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