# Workshop on Dynamical Systems

3-dimensional smooth and piecewise smooth vector fields with invariant spheres

Ana Livia Rodero (ana.rodero@icmc.usp.br)<sup>1</sup> Join work with: Claudio Aguinaldo Buzzi and Joan Torregrosa

January 11-12, 2024





イロト イヨト イヨト イヨト

<sup>1</sup>grant numbers,

FAPESP 2017/08779-8, 2019/00440-7, 2021/12630-5

- 1 Introduction and Preeliminars results
  - Setting the problem
  - Relation with the invariant cones problem
  - Stereographic projection
  - Lyapunov constants and local cyclicity
- 2 Linear v.f
  - smooth case  $X \in \mathfrak{X}_1$
  - piecewise smooth case  $Y \in \mathcal{X}_1$
- 3 Quadratic homogeneous v.f. • smooth case  $X \in \mathfrak{X}_2^H$ 
  - piecewise smooth case  $X \in \mathcal{X}_2^H$
- 4 Quadratic v.f
  - smooth case  $X \in \mathfrak{X}_2$
  - piecewise smooth case  $Y \in \mathcal{X}_2$

< □ > < □ > < □ > < □ >

- Buzzi, C. A., Rodero, A. L. and Torregrosa, J. Center and limit cycles for piecewise linear and quadratic vector fields on invariant spheres, Journal of Nonlinear Science, 31, 92 (2021).
- 2 Buzzi, C. A., Rodero, A. L. and Torregrosa, J. 3-dimensional piecewse linear and quadratic vector fields with invariant speres. Preprint (2023)

Suppose  $X : \mathbb{R}^3 \to \mathbb{R}^3$  that admits  $H(x, y, z) = x^2 + y^2 + z^2$  as first integral. It means that all the spheres

$$\mathbb{S}_{\rho}^{2} = \{(x, y, z) : x^{2} + y^{2} + z^{2} = \rho^{2}\}$$

are invariant by the flow of X. We denote by  $\mathfrak{X}$  this class of smooth vector fields and by  $\mathfrak{X}_n$  when they are polynomials of degree *n*.

Consider the piecewise 3-dimensional differential vector fields with the separation set  $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$ , that is

$$Y(x, y, z) = \begin{cases} X^+(x, y, z), & z \ge 0, \\ X^-(x, y, z), & z \le 0, \end{cases}$$
(1)

such that  $X^+, X^- \in \mathfrak{X}$ . We denote this class by  $\mathcal{X}$  and by  $\mathcal{X}_n$  when  $X^+, X^- \in \mathfrak{X}_n$ .

## We follow the Filippov convention in $\Sigma$ .



Figure: Crossing, sliding and escaping regions, respectively.



Figure: Examples of piecewise smooth vector fields on invariant spheres.

**3** Filippov, A. F. Differential equations with discontinuous righthand sides, vol. 18 of Mathematics and its Applications (Soviet Series), Springer, Dordrecht, 1988. Originally published in Russian.

## Some properties of smooth vector fields $X \in \mathfrak{X}$

#### Lemma.

Let M be an orthogonal matrix (i.e.  $M^{-1} = M^t$ ). If  $X \in \mathfrak{X}$  then  $M \cdot X(M^t) \in \mathfrak{X}$ .

#### Remark

One of the equilibrium points of  $X \in \mathfrak{X}$ , on the sphere  $\mathbb{S}^2_{\rho}$ , can be always located at  $(0, \rho, 0)$  using an orthogonal change of coordinates.

#### Lemma.

The homogeneity property is invariant by an orthogonal change of coordinates.

#### Lemma.

Let  $X \in \mathfrak{X}^{H}$ . The phase portrait on each sphere is topologically equivalent to the one on the sphere of radius 1. Moreover, X has a straight line passing through the origin filled of equilibrium points.

## Proof.

The proof follows just doing the change of coordinates  $y=x/\rho$  and a time rescaling if necessary.  $\hfill\square$ 

## The geometric main idea

We consider the vector fields  $X \in \mathfrak{X}$  restrict to an invariant sphere. When X is homogeneous, the phase portrait on each sphere is topologically equivalent to the one on the sphere of radius 1. So,

if  $X_{|_{\mathbb{S}^2_1}}$  has a limit cycle on  $\mathbb{S}^2_1$ , then X has an invariant cone.

The same idea is valid for piecewise smooth vector fields  $Y \in \mathcal{X}$ .



## The geometric main idea

On the other hand, suppose that:

- The phase portrait of  $X_{|_{S^2_{\rho}}}$  is not always topologically equivalent to the phase portrait of  $X_{|_{S^2_{\rho}}}$ ;
- X has a hyperbolic limit cycle on S<sub>1</sub><sup>2</sup>.

Since this limit cycle is hyperbolic on  $\mathbb{S}_1^2$ , it is normally hyperbolic with respect to the radial direction. Then X has a invariant surface foliated by these limit cycles. The global structure of each invariant surface is due to the birth or death of limit cycles.

## Remark

The same idea is valid for piecewise smooth vector fields  $Y \in \mathcal{X}$ .

Let  $\mathfrak{p} : \mathbb{S}^2_{\rho} \setminus \{(0, -\rho, 0)\} \to \mathbb{R}^2$  be the stereographic projection on the plane  $\{(x, y, z) \in \mathbb{R}^3 : y = \rho\}$  given by

$$\mathfrak{p}(x,y,z) = \left(\frac{2\rho x}{y+
ho}, \frac{2\rho z}{y+
ho}\right).$$



Let  $\mathfrak{p} : \mathbb{S}^2_{\rho} \setminus \{(0, -\rho, 0)\} \to \mathbb{R}^2$  be the stereographic projection on the plane  $\{(x, y, z) \in \mathbb{R}^3 : y = \rho\}$  given by

$$\mathfrak{p}(x,y,z) = \left(\frac{2\rho x}{y+\rho},\frac{2\rho z}{y+\rho}\right).$$



Then the projection  $\mathcal{P}_X : \mathbb{R}^2 \to \mathbb{R}^2$  of the vector field X writes as

$$\mathcal{P}_{X}(\mathbf{u}) = d\mathfrak{p}_{\mathfrak{p}^{-1}(\mathbf{u})} \circ X \circ \mathfrak{p}^{-1}(\mathbf{u}), \qquad (2)$$

where  $X = X_{|_{\mathbb{S}^2_{\rho}}}$ , u = (u, v). Note that  $\mathfrak{p}(0, \rho, 0) = (0, 0)$ .

Let  $\mathfrak{p}$  :  $\mathbb{S}^2_{\rho} \setminus \{(0, -\rho, 0)\} \to \mathbb{R}^2$  be the stereographic projection on the plane  $\{(x, y, z) \in \mathbb{R}^3 : y = \rho\}$  given by

$$\mathfrak{p}(x,y,z) = \left(\frac{2\rho x}{y+\rho},\frac{2\rho z}{y+\rho}\right).$$



 $\mathfrak{p}$  sends the separation set  $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$  of a piecewise vector field  $Y \in \mathcal{X}$  to  $\{(u, v) \in \mathbb{R}^2 : v = 0\}$ . Thus, the projection  $\mathcal{P}_Y : \mathbb{R}^2 \to \mathbb{R}^2$  of (1) is written as

$$\mathcal{P}_{Y}(\mathbf{u}) = \begin{cases} \mathcal{P}_{X^{+}}(\mathbf{u}), \ v \ge 0, \\ \mathcal{P}_{X^{-}}(\mathbf{u}), \ v \le 0, \end{cases}$$
(2)

where  $X^{\pm} = X^{\pm}_{|_{\mathbb{S}^2_{\rho}}}$ , u = (u, v).

We use the Lyapunov constants and the integrability to study the center and cyclicity problems. These are widely used and well-known tools. So, for the sake of time, we will briefly recall the piecewise method.

- 4 Andronov, A. A., Leontovich, E. A., Gordon, I. I. and Maĭer, A. G. Theory of bifurcations of dynamic systems on a plane. Halsted Press [A division of John Wiley Sons], New York-Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem-London, 1973. Translated from the Russian.
- **5** Christopher, C. Estimating limit cycle bifurcations from centers. In Differential equations with symbolic computation. Springer, 2005, pp. 23–35.
- 6 Dumortier, F., Llibre, J., and Artés, J. C *Qualitative theory of planar differential systems*. Universitext. Springer-Verlag, Berlin, 2006.

## Lyapunov constants and local cyclicity

We will recall the stability algorithm for planar piecewise smooth vector fields of the form

$$Y(x,y) = \begin{cases} X^+(x,y), \ y \ge 0, \\ X^-(x,y), \ y \le 0, \end{cases}$$
(3)

having both  $X^{\pm}$  an equilibrium point of nondegenerate center-focus type at the origin. That is,

$$X^{\pm}(x,y) = \left(\alpha^{\pm}x - \beta^{\pm}y + \sum_{k=2}^{n} P_k^{\pm}(x,y), \beta^{\pm}x + \alpha^{\pm}y + \sum_{k=2}^{n} Q_k^{\pm}(x,y)\right),$$

with  $P_k^{\pm}$  and  $Q_k^{\pm}$  homogeneous polynomials of degree k in the variables x and y. We have assumed that both linear parts are in Jordan's normal form.

イロト 不得 トイヨト イヨト

We assume  $\beta^{\pm} \neq 0$  as the non degeneracy condition for each  $X^{\pm}$ . Using polar coordinates,  $(x, y) = (r \cos \theta, r \sin \theta)$ , we write system (3) as

$$\begin{cases} \dot{r} = R^+(r,\theta), & \theta \in [0,\pi], \\ \dot{r} = R^-(r,\theta), & \theta \in [\pi, 2\pi], \end{cases}$$

where the dot represents the derivative with respect to  $\theta$ . Consider  $r^{\pm}(\theta, r_0)$  the solution of  $\dot{r} = R^{\pm}(r, \theta)$  with initial condition  $r^{\pm}(0, r_0) = r_0$ . For  $r_0 > 0$  sufficiently small, the expansion in Taylor's series of  $r^{\pm}(\theta, r_0)$  is given by

$$r^{\pm}(\theta,r_0)=r_0+\sum_{k=1}^{\infty}r_k^{\pm}(\theta)r_0^k,$$

with  $r_k^{\pm}(0) = 0$ , for all  $k \ge 1$ ,  $r^+$  defined for  $\theta \in [0, \pi]$  and  $r^-$  defined for  $\theta \in [\pi, 2\pi]$ .

イロト 不得 トイヨト イヨト 二日

The Poincaré half-return maps are defined by

$$\Pi^+(r_0) = r^+(\pi, r_0)$$
 and  $\widetilde{\Pi}^-(r_0) = r^-(-\pi, r_0),$ 

where  $\Pi^-$  denotes the inverse of  $\Pi^-$  since both  $r^{\pm}$  are defined with initial condition  $\theta = 0$  and  $r_0 > 0$  is sufficiently small.

The displacement function, which is an analytic function, is given by

$$\Delta(r_0) = \widetilde{\Pi}^-(r_0) - \Pi^+(r_0) = \sum_{k=1}^{\infty} \underline{L}_k r_0^k.$$



### Figure: Displacement function

When  $\alpha^+ \alpha^- \neq 0$  the origin is a hyperbolic equilibrium point, so we assume  $\alpha^+ \alpha^- = 0$  on the following.

When,  $L_1 = 0$  and, for  $k \ge 2$ , we can define the *k*-th Lapunov constant by  $L_k \ne 0$ , when  $L_1 = \cdots = L_{k-1} = 0$ . In this case, if there exists  $k \ge 2$  so that  $L_k \ne 0$ , then the origin of system (3) is a weak focus of order k. Otherwise the origin is a center.

Moreover, for piecewise smooth vector fields we can obtain one limit cycle moving the equilibrium points on  $\Sigma$ . Because a sliding or escaping segment is created adding adequately some perturbative parameters. This is known as a pseudo-Hopf bifurcation.

So, we can obtain k crossing limit cycles from a weak-focus of order k.

- Gasull, A., Torregrosa, J. Center-focus problem for discontinuous planar differential equations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1755-1765 (Dynamical systems and functional equations -Murcia, 2000).
- 8 Castillo, J., Llibre, J., and Verduzco, F., The pseudo-Hopf bifurcation for planar discontinuous piecewise linear differential systems, Nonlinear Dynamics, 90 (2017), pp. 1829–1840.

≡ nar

イロト 不得 トイヨト イヨト

## Linear vector fields

Let  $X : \mathbb{R}^3 \to \mathbb{R}^3$  be a linear vector field

$$\dot{x} = b_0 + b_1 x + b_2 y + b_3 z, \dot{y} = c_0 + c_1 x + c_2 y + c_3 z, \dot{z} = d_0 + d_1 x + d_2 y + d_3 z.$$

Suppose that  $\langle x, X(x) \rangle = 0$ , for all x (it means that  $X \in \mathfrak{X}_1$ ). Then it is always homogeneous and it writes in the form

$$\dot{x} = -a_1 y - a_2 z,$$
  
 $\dot{y} = a_1 x - a_3 z,$  (4)  
 $\dot{z} = a_2 x + a_3 y.$ 

#### Theorem

Let  $p \in \mathbb{S}_{\rho}^2 = \{(x, y, z) : x^2 + y^2 + z^2 = \rho^2\}$  be an equilibrium point of system (4) which is isolated in  $\mathbb{S}_{\rho}^2$ . Then p is a center. Moreover, the system is completely integrable.

Proof.

$$H_2(x, y, z) = a_3x - a_2y + a_1z$$

is also a first integral for the linear sistem (4).

#### Remark

It means that no differential system  $X \in \mathfrak{X}_1$  admits an isolated invariant cone.

Any  $Y = (X^+, X^-) \in \mathcal{X}_1$  is a piecewise 3-dimensional vector field of the form

$$Y(x, y, z) = \begin{cases} X^{+}(x; a_{1}^{+}, a_{2}^{+}, a_{3}^{+}), & z \ge 0, \\ X^{-}(x; a_{1}^{-}, a_{2}^{-}, a_{3}^{-}), & z \le 0, \end{cases}$$
(5)

#### with

$$X^{\pm}(\mathbf{x}; a_1^{\pm}, a_2^{\pm}, a_3^{\pm}) = (-a_1^{\pm}y - a_2^{\pm}z, a_1^{\pm}x - a_3^{\pm}z, a_2^{\pm}x + a_3^{\pm}y).$$
(6)

#### Theorem

No piecewise differential system  $Y \in \mathcal{X}_1$ , given by (5), admits an isolated invariant cone.

It is equivalent to prove that:

#### Theorem

No piecewise differential system  $Y \in \mathcal{X}_1$ , given by (5), admits limit cycles on the sphere  $\mathbb{S}^2_{\rho}$ .

#### Proof.

The key point of this proof is understanding how the level curves of  $H_2^{\pm}(x, y, z) = a_3^{\pm}x - a_2^{\pm}y + a_1^{\pm}z$  interact with  $\Sigma$ .

Firstly we note that when  $a_2^{\pm} = a_3^{\pm} = 0$ ,  $H_2^{\pm}(x, y, z) = a_1 z$ , which implies that  $\Sigma$  is invariant by the flow of (6). Then, on the following we assume  $(a_2^{\pm})^2 + (a_3^{\pm})^2 \neq 0$ 



Let  $p = (x_0, y_0, 0) \in \Sigma \cap \mathbb{S}^2_{\rho}$ . Then, there exist  $k^{\pm}$  such that  $H_2^{\pm}(p) = k^{\pm}$ . The half-return maps  $\pi^{\pm}(p) = q^{\pm} = (x_1^{\pm}, y_1^{\pm}, 0)$  satisfy

$$H(q^{\pm}) = \rho^{2},$$
  

$$H_{2}^{+}(q^{+}) = a_{3}^{+}x_{1}^{+} - a_{2}^{+}y_{1}^{+} = k^{+},$$
  

$$H_{2}^{-}(q^{-}) = a_{3}^{-}x_{1}^{-} - a_{2}^{-}y_{1}^{-} = k^{-}.$$

#### Proof.

Solving the systems of equations

$$\{H(q^+) = \rho^2, H_2^+(q^+) = k^+\}, \{H(q^-) = \rho^2, H_2^-(q^-) = k^-\}$$

we obtain the solutions

$$q^{\pm} = \left( -\frac{((a_{2}^{\pm})^{2} - (a_{3}^{\pm})^{2})x_{0} + 2a_{2}^{\pm}a_{3}^{\pm}y_{0}}{(a_{2}^{\pm})^{2} + (a_{3}^{\pm})^{2}}, \frac{((a_{2}^{\pm})^{2} - (a_{3}^{\pm})^{2})y_{0} - 2a_{2}^{\pm}a_{3}^{\pm}x_{0}}{(a_{2}^{\pm})^{2} + (a_{3}^{\pm})^{2}}, 0 \right).$$

So, the difference map,  $d(p) = \pi^+(p) - \pi^-(p) : \Sigma o \mathbb{R}$ , is such that

$$d(p) = (2(a_2^-a_3^+ - a_3^-a_2^+))((a_2^-a_3^+ + a_2^+a_3^-)x_0 - (a_2^-a_2^+ - a_3^-a_3^+)y_0), - 2(a_2^-a_3^+ - a_3^-a_2^+))((a_2^-a_2^+ - a_3^-a_3^+)x_0 + (a_2^-a_3^+ + a_2^+a_3^-)y_0), 0).$$

Consequently, the difference map d(p) is identical to zero if, and only if,  $a_2^+ a_3^- = a_2^- a_3^+$ . Hence, either all the crossing trajectories of (5), on  $\mathbb{S}^2_{\rho}$ , are closed or none of them are.

## Quadratic homogeneous vector fields

Let  $X \in \mathfrak{X}_2^H$ , without lose of generality, it writes in the following canonical form

$$\begin{aligned} \dot{x} &= -a_4 xy - a_5 xz - (a_6 + a_7)yz - a_8 z^2, \\ \dot{y} &= a_4 x^2 + a_6 xz - a_9 z^2, \\ \dot{z} &= a_5 x^2 + a_7 xy + a_8 xz + a_9 yz. \end{aligned} \tag{7}$$

We notice that the equilibrium point is located at (0, 1, 0).

#### Theorem

The equilibrium point (0, 1, 0) of system (7) is a nondegenerate center if, and only if,  $a_7 \neq 0$ ,  $a_4 = a_9$ , and  $a_4a_5a_8a_9 + a_5a_6a_7a_8 + a_5^2a_7a_9 + a_5a_8a_9^2 - a_7a_8^2a_9 = 0$ .

### Proof.

The projected system  $\mathcal{P}_X$  is of the form

$$\dot{u} = -4a_4 u - 4\xi v - 4a_5 u v - 4a_8 v^2 - a_4 u^3 - (\xi - 2a_7) u^2 v + (a_4 + 2a_9) u v^2 + \xi v^3,$$
  

$$\dot{v} = 4a_7 u + 4a_9 v + 4a_5 u^2 + 4a_8 u v - a_7 u^3 - (2a_4 + a_9) u^2 v - (2\xi - a_7) u v^2 + a_9 v^3,$$
(8)

where  $\xi = (w^2 + a_4 a_9)/a_7$  and  $w^2 = a_6 a_7 + a_7^2 - a_9^2$ . It is easy to check that the trace and determinant of J are  $-4(a_4 - a_9)$  and  $16w^2$ , respectively. Moreover,

$$L_1 = \frac{16(a_7^2 + a_9^2 + w^2)C}{3(a_9^2 + w^2)^2},$$

where  $C = -a_5^2 a_7 a_9 + a_5 a_7^2 a_8 - a_5 a_8 a_9^2 - a_5 a_8 w^2 + a_7 a_8^2 a_9$ . We finish the proof showing that under these conditions system (7) is always time reversible.

## Proposition

The quadratic homogeneous vector field (7) has at least one limit cycle bifurcating from (0, 1, 0) on the sphere  $\mathbb{S}_1^2$ .

#### Proof.

Consider the quadratic homogeneous vector field (7) and its projection (8) with the parameters values  $(a_4, a_5, a_7, a_8, a_9, w) = (1 + \varepsilon, 1, 1, 0, 1, 1)$ , given by

$$\dot{u} = (-4 + \varepsilon)u - 4(2 + \varepsilon)v - 4uv - (1 + \varepsilon)u^3 + \varepsilon u^2 v + (3 + \varepsilon)uv^2 + (2 + \varepsilon)v^3, \dot{v} = 4u + 4v + 4u^2 - u^3 - (3 + \varepsilon)u^2 v - (3 + \varepsilon)uv^2 + v^3.$$
(9)

Note that the origin is an equilibrium point of (9). Let J be the Jacobian matrix associated to (9) at the origin. As the trace of J is  $\varepsilon$  and its determinant is  $16+12\varepsilon$ , then the origin is a weak focus for  $\varepsilon = 0$ . The prof follows by the classical Hopf bifurcation.

On the following we will focus our attention on the center-focus problem that appears naturally for the piecewise smooth system

$$Y(x, y, z) = \begin{cases} X^+(x, y, z), \ z \ge 0, \\ X^-(x, y, z), \ z \le 0, \end{cases}$$
(10)

where we obtain  $X^{\pm}$  doing  $a_i = a_i^{\pm}$  in (7) and assuming that

$$p = (0, 1, 0) \in \Sigma = \{(x, y, z) \in \mathbb{R}^3: z = 0\}$$

is of the center type for both  $X^+$  and  $X^-$  on  $\mathbb{S}^2_{\rho}$ .

We also assume that the system (10) and the projected associated systems  $\mathcal{P}_Y = (\mathcal{P}_{X^+}, \mathcal{P}_{X^-})$  is continuous but not differentiable on the separation set  $\Sigma$ . It occurs if, and only if,  $a_4^- = a_4^+$ ,  $a_5^- = a_5^+$ , and  $a_7^- = a_7^+$ . Under these assumptions we calculated the Lyapunov constants and we obtain the following result.

イロト 不得 トイヨト イヨト

### Proposition

The piecewise continuous vector field (10) has a center at the equilibrium point (0,1,0), on  $\mathbb{S}_{1}^{2}$ , if  $a_{7}^{\pm} \neq 0$ ,  $a_{4}^{\pm} = a_{9}^{\pm}$  and one of the following conditions is satisfied: **a**  $a_{8}^{-} = -a_{8}^{+}$ ,  $a_{9}^{-} = 0$ , and  $w^{+} = w^{-}$ ; **b**  $a_{7}^{-} = \pm w$ ,  $a_{9}^{-} = 0$ , and  $w^{+} = w^{-}$ ; **c**  $a_{8}^{+} = a_{8}^{-}$ ,  $-(a_{5}^{-})^{2}a_{7}^{-}a_{9}^{-} + a_{5}^{-}(a_{7}^{-})^{2}a_{8}^{-} - a_{5}^{-}a_{8}^{-}(a_{9}^{-})^{2} - a_{5}^{-}a_{8}^{-}w^{2} + a_{7}^{-}(a_{8}^{-})^{2}a_{9}^{-} = 0$ , and  $w^{+} = w^{-}$ ; **d**  $a_{5}^{-} = 0$  and  $a_{9}^{-} = 0$ .

### Proposition

Consider system (10) with  $a_5^- = 1$ ,  $a_7^- = 1$ ,  $a_8^+ = 3$ ,  $a_8^- = 1$ ,  $a_9^- = 0$ , and  $w^+ = w^- = 2$ . Then, the equilibrium point p = (0, 1, 0) is a weak focus of third-order and there exist 2 small amplitude limit cycles, on  $\mathbb{S}_1^2$ , bifurcating from p with a continuous perturbation in  $\mathcal{X}_2^H$ .

## Proof.

For these values of parameters, we have

$$L_2 = 0$$
 and  $L_3 = 15\pi/16 \neq 0$ .

Hence, adding the trace parameter and using the derivation-division algorithm we obtain 2 small amplitude crossing limit cycles bifurcating from the equilibrium point (0, 1, 0) on  $\mathbb{S}_1^2$ .

イロン イ団 とく ヨン イヨン

With the previous results we can see an important difference between linear and quadratic homogeneous vector fields in the classes  $\mathfrak{X}$  and  $\mathcal{X}$ , as only quadratic homogeneous vector fields  $X \in \mathfrak{X}_2^H$  ( $Y \in \mathcal{X}_2^H$ , respect.) can present isolated (crossing, respect.) invariant cones, fulfilled of closed trajectories.

On the following we study the quadratic case.

## Quadratic vector fields

The behavior of homogeneous vector fields is the same on all spheres. But this special property can not be extended for quadratic vector fields  $\mathfrak{X}_2$ .

#### Example

The quadratic system

$$(\dot{x}, \dot{y}, \dot{z}) = (-xz - yz - z^2 - z, -z^2, x^2 + xy + xz + yz + x)$$

is such that all the spheres are invariant by X and the equilibrium points are located at  $p_{\pm} = (0, \pm \rho, 0)$  and at  $\{x + y + 1 = z = 0\}$ . So, in addition to  $p_{\pm}$  we have two more when  $\rho > 1/\sqrt{2}$  or one more when  $\rho = 1/\sqrt{2}$ .

We notice that in the above example the number of equilibrium points decrease from 4 to 2 when the plane x + y + 1 = 0 does not intersect the sphere of radius  $\rho$ .

We restrict our analysis to the unit sphere

$$\mathbb{S}_1^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$$

In this case we will show that, generically, any  $X\in\mathfrak{X}_2$  writes in its canonical form as

$$\begin{aligned} \dot{x} &= -a_1y - a_2z - a_4xy - a_{10}y^2 - a_5xz - (a_6 + a_7)yz - a_8z^2, \\ \dot{y} &= a_1x - a_3z + a_4x^2 + a_{10}xy + a_6xz - a_{11}yz - a_9z^2, \\ \dot{z} &= a_2x + a_3y + a_5x^2 + a_7xy + a_{11}y^2 + a_8xz + a_9yz. \end{aligned}$$
(11)

The projected vector field Y has a weak focus on the origin when  $a_4 = a_9$  and  $a_2a_6 + a_6a_7 + 2a_2a_7 + a_2^2 + a_7^2 - a_9^2 > 0$ .

We will add two extra conditions:

 $a_9 = 0$  and  $a_2 + a_7 = 1$ .

Then the projected vector field Y has a weak focus on the origin if, and only if,  $a_4 = 0$  and  $a_6 + 1 > 0$ . Writing  $w^2 = a_6 + 1$ , with  $w \neq 0$ , we obtain

$$\dot{x} = -a_1y - (1 - a_7)z - a_4xy + a_1y^2 - a_5xz + (1 - a_7 - w^2)yz - a_8z^2,$$
  

$$\dot{y} = a_1x + a_{11}z + a_4x^2 - a_1xy + (w^2 - 1)zx - a_{11}yz,$$
  

$$\dot{z} = (1 - a_7)x - a_{11}y + a_5x^2 + a_7xy + a_{11}y^2 + a_8xz.$$
(12)

Then, after a reparametrization of the time, the projected system of (14) is

$$\begin{split} \dot{u} &= -\frac{a_4}{w}u - v - \frac{a_1}{2}u^2 - \frac{a_5}{w}uv - \frac{a_1 + 2a_8}{2w^2}v^2 - \frac{a_4w}{4}u^3 + \frac{2a_7 - w^2}{4}u^2v \\ &+ \frac{a_4}{4w}uv^2 + \frac{w^2 + 2c_7 - 2}{4w^2}v^3 - \frac{a_1w^2}{8}u^4 - \frac{a_{11}w}{4}u^3v - \frac{a_{11}}{4w}uv^3 + \frac{a_1}{8w^2}v^4, \\ \dot{v} &= u + \frac{(2a_5 - a_{11})w}{2}u^2 + a_8uv - \frac{a_{11}}{2w}v^2 - \frac{(2a_7 - 1)w^2}{4}u^3 - \frac{a_4w}{2}u^2v \\ &- \frac{2w^2 + 2a_7 - 3}{4}uv^2 + \frac{w^3a_{11}}{8}u^4 - \frac{w^2a_1}{4}u^3v - \frac{a_1}{4}uv^3 - \frac{a_{11}}{8w}v^4. \end{split}$$
(13)

メロト メタト メヨト メヨト

### Theorem

#### The system

$$\begin{aligned} \dot{x} &= -a_1 y - (1 - a_7) z - a_4 x y + a_1 y^2 - a_5 x z + (1 - a_7 - w^2) y z - a_8 z^2, \\ \dot{y} &= a_1 x + a_{11} z + a_4 x^2 - a_1 x y + (w^2 - 1) z x - a_{11} y z, \\ \dot{z} &= (1 - a_7) x - a_{11} y + a_5 x^2 + a_7 x y + a_{11} y^2 + a_8 x z, \end{aligned}$$
(14)

has a center at the equilibrium point (0, 1, 0) if  $a_4 = 0$  and one of the following conditions is satisfied:

a 
$$w = 1, a_1 a_5 + a_8 a_{11} = 0;$$
  
b  $a_1 = 0, a_8 = 0;$   
c  $a_5 = 0, a_{11} = 0;$   
d  $a_1 = a_8, a_5 = -a_{11};$   
e  $w \neq 1,$   
 $a_1 = \frac{w^2 - 1}{w^2 + 1} a_8, a_5 = \frac{w^2 + 1}{w^2 - 1} a_{11}, a_7 = \frac{1}{w^2 + 1} - \frac{1}{(w^2 + 1)} a_8^2 - \frac{w^2 + 1}{(w^2 - 1)^2} a_{11}^2.$ 

イロト イヨト イヨト イヨト

2

Let  $X = X(x, a) \in \mathfrak{X}_2$  given by (14) where x = (x, y, z) and  $a = (a_1, a_5, a_7, a_8, a_{11}, w)$ . Denoting  $a + \varepsilon^{\pm} = (a_1 + \varepsilon_1^{\pm}, \ldots, w + \varepsilon_6^{\pm})$  we consider the piecewise perturbation of X defined by

$$Y(\mathbf{x},\varepsilon) = \begin{cases} X(\mathbf{x};\mathbf{a}+\varepsilon^{+}), \ z \ge 0, \\ X(\mathbf{x};\mathbf{a}+\varepsilon^{-}), \ z \le 0, \end{cases}$$
(15)

and the projected vector field associeted is of the form

$$\mathcal{P}_{Y}(\mathbf{u},\varepsilon) = \begin{cases} \mathcal{P}_{X}(\mathbf{u};\mathbf{a}+\varepsilon^{+}), \ \mathbf{v} \ge \mathbf{0}, \\ \mathcal{P}_{X}(\mathbf{u};\mathbf{a}+\varepsilon^{-}), \ \mathbf{v} \le \mathbf{0}, \end{cases}$$
(16)

where u = (u, v) and  $\mathcal{P}_X(u, 0)$  is given by (13).

#### Theorem

Consider the system

$$\dot{x} = -\frac{4}{5}y - \frac{13}{8}z - \frac{5}{2}xz + \frac{4}{5}y^2 - \frac{59}{8}yz - z^2,$$
  

$$\dot{y} = \frac{4}{5}x + 2z - \frac{4}{5}xy + 8xz - 2yz,$$
  

$$\dot{z} = \frac{13}{8}x - 2y + \frac{5}{2}x^2 - \frac{5}{8}xy + xz + 2y^2.$$
(17)

## [a] (0,1,0) is a center.

- There exists a smooth quadratic perturbation of (17) in X such that at least 3 hyperbolic limit cycles of small amplitude bifurcate from the equilibrium point (0,1,0) on S<sub>1</sub><sup>2</sup>.
- **c** There exists a piecewise quadratic perturbation of (17) in  $\mathcal{X}$  such that at least 10 hyperbolic crossing limit cycles of small amplitude bifurcate from the equilibrium point (0,1,0) on  $\mathbb{S}_1^2$ .

Note that system (17) is obtained doing  $a_1 = 4/5$ ,  $a_4 = 0$ ,  $a_5 = 5/2$ ,  $a_7 = -5/8$ ,  $a_8 = 1$ ,  $a_{11} = 2$ , and w = 3 in (14).

We consider the piecewise perturbation

$$(a_1, a_5, a_7, a_8, a_{11}, w) = (4/5 + \varepsilon_1^{\pm}, 5/2 + \varepsilon_2^{\pm}, -5/8 + \varepsilon_3^{\pm}, 1 + \varepsilon_4^{\pm}, 2 + \varepsilon_5^{\pm}, 3 + \varepsilon_6^{\pm})$$

in the projected system (13). We denote by  $L_i(\varepsilon)$ , with  $\varepsilon = (\varepsilon_1^+, \ldots, \varepsilon_6^+, \varepsilon_1^-, \ldots, \varepsilon_6^-)$ , the corresponding Lyapunov constants. Clearly, when  $\varepsilon = 0$  the origin is a center and then  $L_i(0) = 0$  for all *i*. We compute the Taylor series of the Lyapunov constants up to first-order with respect to  $\varepsilon$ ,  $L_i^{[1]}(\varepsilon)$ , and we write

$$L_i(\varepsilon) = L_i^{[1]}(\varepsilon) + \mathcal{O}_2(\varepsilon).$$

As the matrix formed with the coefficients of

$$(L_2^{[1]}, \ldots, L_{12}^{[1]})$$

with respect to  $\varepsilon$  has rank 9 so adding the trace parameter and using the Melnikov Theory, we can get 9 hyperbolic crossing limit cycles of small amplitude bifurcating from the origin. Adding the sliding parameter we get a pseudo-Hopf bifurcation and the proof follows.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つのべ

Moltes gràcies! ¡Muchas gracias! Thank you!





