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Introduction and Preeliminars results Setting the problem

1 Buzzi, C. A., Rodero, A. L. and Torregrosa, J.Center and limit cycles for piecewise linear and quadratic
vector fields on invariant spheres, Journal of Nonlinear Science, 31, 92 (2021).

2 Buzzi, C. A., Rodero, A. L. and Torregrosa, J. 3-dimensional piecewse linear and quadratic vector fields
with invariant speres. Preprint (2023)
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Introduction and Preeliminars results Setting the problem

Suppose X : R3 → R3 that admits H(x , y , z) = x2 + y2 + z2 as first integral. It
means that all the spheres

S2ρ = {(x , y , z) : x2 + y2 + z2 = ρ2}

are invariant by the flow of X . We denote by X this class of smooth vector fields
and by Xn when they are polynomials of degree n.

Consider the piecewise 3-dimensional differential vector fields with the separation
set Σ = {(x , y , z) ∈ R3 : z = 0}, that is

Y (x , y , z) =

{
X+(x , y , z), z ≥ 0,
X−(x , y , z), z ≤ 0,

(1)

such that X+,X− ∈ X. We denote this class by X and by Xn when X+,X− ∈ Xn.
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Introduction and Preeliminars results Setting the problem

We follow the Filippov convention in Σ.

Figure: Crossing, sliding and escaping regions, respectively.

Figure: Examples of piecewise smooth vector fields on invariant spheres.

3 Filippov, A. F. Differential equations with discontinuous righthand sides, vol. 18 of Mathematics and its
Applications (Soviet Series), Springer, Dordrecht, 1988. Originally published in Russian.
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Introduction and Preeliminars results Setting the problem

Some properties of smooth vector fields X ∈ X

Lemma.

Let M be an orthogonal matrix (i.e. M−1 = Mt). If X ∈ X then M · X (Mt) ∈ X.

Remark

One of the equilibrium points of X ∈ X, on the sphere S2ρ, can be always located
at (0, ρ, 0) using an orthogonal change of coordinates.

Lemma.

The homogeneity property is invariant by an orthogonal change of coordinates.
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Introduction and Preeliminars results Relation with the invariant cones problem

Lemma.

Let X ∈ XH . The phase portrait on each sphere is topologically equivalent to the
one on the sphere of radius 1. Moreover, X has a straight line passing through the
origin filled of equilibrium points.

Proof.

The proof follows just doing the change of coordinates y = x/ρ and a time rescaling
if necessary.
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Introduction and Preeliminars results Relation with the invariant cones problem

The geometric main idea

We consider the vector fields X ∈ X restrict to an invariant sphere. When X is
homogeneous, the phase portrait on each sphere is topologically equivalent to the
one on the sphere of radius 1. So,

if X|S2
1

has a limit cycle on S21, then X has an invariant cone.

The same idea is valid for piecewise smooth vector fields Y ∈ X .

x

y

z

1

Figure: Example of invariant cone.
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Introduction and Preeliminars results Relation with the invariant cones problem

The geometric main idea

On the other hand, suppose that:

The phase portrait of X|S2ρ
is not always topologically equivalent to the phase

portrait of X|S2
1

;

X has a hyperbolic limit cycle on S21.
Since this limit cycle is hyperbolic on S21, it is normally hyperbolic with respect to
the radial direction. Then X has a invariant surface foliated by these limit cycles.
The global structure of each invariant surface is due to the birth or death of limit
cycles.

Remark

The same idea is valid for piecewise smooth vector fields Y ∈ X .
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Introduction and Preeliminars results Stereographic projection

Let p : S2ρ \ {(0,−ρ, 0)} → R2 be the stereographic projection on the plane

{(x , y , z) ∈ R3 : y = ρ} given by

p(x , y , z) =

(
2ρx

y + ρ
,
2ρz

y + ρ

)
.
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Introduction and Preeliminars results Stereographic projection

Let p : S2ρ \ {(0,−ρ, 0)} → R2 be the stereographic projection on the plane

{(x , y , z) ∈ R3 : y = ρ} given by

p(x , y , z) =

(
2ρx

y + ρ
,
2ρz

y + ρ

)
.

Then the projection PX : R2 → R2 of the vector field X writes as

PX (u) = dpp−1(u) ◦ X ◦ p−1(u), (2)

where X = X|S2ρ
, u = (u, v). Note that p(0, ρ, 0) = (0, 0).
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Introduction and Preeliminars results Stereographic projection

Let p : S2ρ \ {(0,−ρ, 0)} → R2 be the stereographic projection on the plane

{(x , y , z) ∈ R3 : y = ρ} given by

p(x , y , z) =

(
2ρx

y + ρ
,
2ρz

y + ρ

)
.

p sends the separation set Σ = {(x , y , z) ∈ R3 : z = 0} of a piecewise vector field
Y ∈ X to {(u, v) ∈ R2 : v = 0}. Thus, the projection PY : R2 → R2 of (1) is
written as

PY (u) =

{
PX+(u), v ≥ 0,

PX−(u), v ≤ 0,
(2)

where X± = X±
|S2ρ

, u = (u, v).
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Introduction and Preeliminars results Lyapunov constants and local cyclicity

We use the Lyapunov constants and the integrability to study the center and
cyclicity problems. These are widely used and well-known tools. So, for the sake of
time, we will briefly recall the piecewise method.

4 Andronov, A. A., Leontovich, E. A., Gordon, I. I. and Măıer, A. G. Theory of bifurcations of dynamic
systems on a plane. Halsted Press [A division of John Wiley Sons], New York-Toronto, Ont.; Israel
Program for Scientific Translations, Jerusalem-London, 1973. Translated from the Russian.

5 Christopher, C. Estimating limit cycle bifurcations from centers. In Differential equations with symbolic
computation. Springer, 2005, pp. 23–35.

6 Dumortier, F., Llibre, J., and Artés, J. C Qualitative theory of planar differential systems. Universitext.
Springer-Verlag, Berlin, 2006.
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Introduction and Preeliminars results Lyapunov constants and local cyclicity

Lyapunov constants and local cyclicity

We will recall the stability algorithm for planar piecewise smooth vector fields of
the form

Y (x , y) =

{
X+(x , y), y ≥ 0,

X−(x , y), y ≤ 0,
(3)

having both X± an equilibrium point of nondegenerate center-focus type at the
origin. That is,

X±(x , y) =

(
α±x − β±y +

n∑
k=2

P±
k (x , y), β±x + α±y +

n∑
k=2

Q±
k (x , y)

)
,

with P±
k and Q±

k homogeneous polynomials of degree k in the variables x and y .
We have assumed that both linear parts are in Jordan’s normal form.
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Introduction and Preeliminars results Lyapunov constants and local cyclicity

We assume β± ̸= 0 as the non degeneracy condition for each X±. Using polar
coordinates, (x , y) = (r cos θ, r sin θ), we write system (3) as{

ṙ =R+(r , θ), θ ∈ [0, π],

ṙ =R−(r , θ), θ ∈ [π, 2π],

where the dot represents the derivative with respect to θ.
Consider r±(θ, r0) the solution of ṙ = R±(r , θ) with initial condition r±(0, r0) = r0.
For r0 > 0 sufficiently small, the expansion in Taylor’s series of r±(θ, r0) is given by

r±(θ, r0) = r0 +
∞∑
k=1

r±k (θ)rk0 ,

with r±k (0) = 0, for all k ≥ 1, r+ defined for θ ∈ [0, π] and r− defined for
θ ∈ [π, 2π].
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Introduction and Preeliminars results Lyapunov constants and local cyclicity

The Poincaré half-return maps are defined by

Π+(r0) = r+(π, r0) and Π̃−(r0) = r−(−π, r0),

where Π̃− denotes the inverse of Π− since both r± are defined with initial condition
θ = 0 and r0 > 0 is sufficiently small.
The displacement function, which is an analytic function, is given by

∆(r0) = Π̃−(r0)− Π+(r0) =
∞∑
k=1

Lk r
k
0 .

Figure: Displacement function
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Introduction and Preeliminars results Lyapunov constants and local cyclicity

When α+α− ̸= 0 the origin is a hyperbolic equilibrium point, so we assume α+α− =
0 on the following.

When, L1 = 0 and, for k ≥ 2, we can define the k-th Lapunov constant by Lk ̸= 0,
when L1 = · · · = Lk−1 = 0. In this case, if there exists k ≥ 2 so that Lk ̸= 0, then
the origin of system (3) is a weak focus of order k. Otherwise the origin is a center.

Moreover, for piecewise smooth vector fields we can obtain one limit cycle moving
the equilibrium points on Σ. Because a sliding or escaping segment is created
adding adequately some perturbative parameters. This is known as a pseudo-Hopf
bifurcation.

So, we can obtain k crossing limit cycles from a weak-focus of order k.

7 Gasull, A., Torregrosa, J. Center-focus problem for discontinuous planar differential equations, Internat.
J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1755-1765 (Dynamical systems and functional equations -
Murcia, 2000).

8 Castillo, J., Llibre, J., and Verduzco, F., The pseudo-Hopf bifurcation for planar discontinuous piecewise
linear differential systems, Nonlinear Dynamics, 90 (2017), pp. 1829–1840.
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Linear v.f smooth case X ∈ X1

Linear vector fields

Let X : R3 → R3 be a linear vector field

ẋ = b0 + b1x + b2y + b3z ,

ẏ = c0 + c1x + c2y + c3z ,

ż = d0 + d1x + d2y + d3z .

Suppose that < x,X (x) >= 0, for all x (it means that X ∈ X1). Then it is always
homogeneous and it writes in the form

ẋ = −a1y − a2z ,

ẏ = a1x − a3z ,

ż = a2x + a3y .

(4)
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Linear v.f smooth case X ∈ X1

Theorem

Let p ∈ S2ρ = {(x , y , z) : x2 + y2 + z2 = ρ2} be an equilibrium point of system

(4) which is isolated in S2ρ. Then p is a center. Moreover, the system is completely
integrable.

Proof.

H2(x , y , z) = a3x − a2y + a1z

is also a first integral for the linear sistem (4).

Remark

It means that no differential system X ∈ X1 admits an isolated invariant cone.
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Linear v.f piecewise smooth caseY ∈ X1

Any Y = (X+,X−) ∈ X1 is a piecewise 3-dimensional vector field of the form

Y (x , y , z) =

{
X+(x; a+1 , a

+
2 , a

+
3 ), z ≥ 0,

X−(x; a−1 , a
−
2 , a

−
3 ), z ≤ 0,

(5)

with
X±(x; a±1 , a

±
2 , a

±
3 ) = (−a±1 y − a±2 z , a

±
1 x − a±3 z , a

±
2 x + a±3 y). (6)

Theorem

No piecewise differential system Y ∈ X1, given by (5), admits an isolated invariant
cone.

It is equivalent to prove that:

Theorem

No piecewise differential system Y ∈ X1, given by (5), admits limit cycles on the
sphere S2ρ.
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Linear v.f piecewise smooth caseY ∈ X1

Proof.

The key point of this proof is understanding how the level curves of H±
2 (x , y , z) =

a±3 x − a±2 y + a±1 z interact with Σ.

Firstly we note that when a±2 = a±3 = 0,
H±

2 (x , y , z) = a1z , which implies that Σ is in-
variant by the flow of (6). Then, on the following
we assume (a±2 )

2 + (a±3 )
2 ̸= 0

Let p = (x0, y0, 0) ∈ Σ ∩ S2ρ. Then, there exist k± such that H±
2 (p) = k±. The

half-return maps π±(p) = q± = (x±1 , y±
1 , 0) satisfy

H(q±) = ρ2,

H+
2 (q

+) = a+3 x
+
1 − a+2 y

+
1 = k+,

H−
2 (q−) = a−3 x

−
1 − a−2 y

−
1 = k−.
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Linear v.f piecewise smooth caseY ∈ X1

Proof.

Solving the systems of equations

{H(q+) = ρ2,H+
2 (q

+) = k+}, {H(q−) = ρ2, H−
2 (q−) = k−}

we obtain the solutions

q± =

(
− ((a±2 )

2 − (a±3 )
2)x0 + 2a±2 a

±
3 y0

(a±2 )
2 + (a±3 )

2
,
((a±2 )

2 − (a±3 )
2)y0 − 2a±2 a

±
3 x0

(a±2 )
2 + (a±3 )

2
, 0

)
.

So, the difference map, d(p) = π+(p)− π−(p) : Σ → R, is such that

d(p) =
(
2(a−2 a

+
3 − a−3 a

+
2 )((a

−
2 a

+
3 + a+2 a

−
3 )x0 − (a−2 a

+
2 − a−3 a

+
3 )y0),

− 2(a−2 a
+
3 − a−3 a

+
2 )((a

−
2 a

+
2 − a−3 a

+
3 )x0 + (a−2 a

+
3 + a+2 a

−
3 )y0), 0

)
.

Consequently, the difference map d(p) is identical to zero if, and only if, a+2 a
−
3 =

a−2 a
+
3 . Hence, either all the crossing trajectories of (5), on S2ρ, are closed or none

of them are. □
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Quadratic homogeneous v.f. smooth case X ∈ XH
2

Quadratic homogeneous vector fields

Let X ∈ XH
2 , without lose of generality, it writes in the following canonical form

ẋ = −a4xy − a5xz − (a6 + a7)yz − a8z
2,

ẏ = a4x
2 + a6xz − a9z

2,

ż = a5x
2 + a7xy + a8xz + a9yz .

(7)

We notice that the equilibrium point is located at (0, 1, 0).
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Quadratic homogeneous v.f. smooth case X ∈ XH
2

Theorem

The equilibrium point (0, 1, 0) of system (7) is a nondegenerate center if, and only
if, a7 ̸= 0, a4 = a9, and a4a5a8a9 + a5a6a7a8 + a25a7a9 + a5a8a

2
9 − a7a

2
8a9 = 0.

Proof.

The projected system PX is of the form

u̇ = −4a4u−4ξv−4a5uv−4a8v
2−a4u

3−(ξ − 2a7)u
2v+(a4 + 2a9)uv

2 + ξv 3,

v̇ = 4a7u+4a9v+4a5u
2+4a8uv−a7u

3−(2a4 + a9)u
2v−(2ξ − a7)uv

2+a9v
3,

(8)

where ξ = (w2 + a4a9)/a7 and w2 = a6a7 + a7
2 − a9

2. It is easy to check that the
trace and determinant of J are −4(a4 − a9) and 16w2, respectively. Moreover,

L1 =
16(a27 + a29 + w 2)C

3(a29 + w 2)2
,

where C = −a25a7a9 + a5a
2
7a8 − a5a8a

2
9 − a5a8w

2 + a7a
2
8a9.

We finish the proof showing that under these conditions system (7) is always time
reversible.
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Quadratic homogeneous v.f. smooth case X ∈ XH
2

Proposition

The quadratic homogeneous vector field (7) has at least one limit cycle bifurcating
from (0, 1, 0) on the sphere S21.

Proof.

Consider the quadratic homogeneous vector field (7) and its projection (8) with the
parameters values (a4, a5, a7, a8, a9,w) = (1 + ε, 1, 1, 0, 1, 1), given by

u̇ =(−4 + ε)u − 4(2 + ε)v − 4uv − (1 + ε)u3 + εu2v + (3 + ε)uv 2 + (2 + ε)v 3,

v̇ =4u + 4v + 4u2 − u3 − (3 + ε)u2v − (3 + ε)uv 2 + v 3.
(9)

Note that the origin is an equilibrium point of (9). Let J be the Jacobian matrix
associated to (9) at the origin. As the trace of J is ε and its determinant is 16+12ε,
then the origin is a weak focus for ε = 0. The prof follows by the classical Hopf
bifurcation.
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Quadratic homogeneous v.f. piecewise smooth case X ∈ XH
2

On the following we will focus our attention on the center-focus problem that
appears naturally for the piecewise smooth system

Y (x , y , z) =

{
X+(x , y , z), z ≥ 0,

X−(x , y , z), z ≤ 0,
(10)

where we obtain X± doing ai = a±i in (7) and assuming that

p = (0, 1, 0) ∈ Σ = {(x , y , z) ∈ R3 : z = 0}

is of the center type for both X+ and X− on S2ρ.

We also assume that the system (10) and the projected associated systems PY =
(PX+ ,PX−) is continuous but not differentiable on the separation set Σ. It occurs
if, and only if, a−4 = a+4 , a

−
5 = a+5 , and a−7 = a+7 . Under these assumptions we

calculated the Lyapunov constants and we obtain the following result.
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Quadratic homogeneous v.f. piecewise smooth case X ∈ XH
2

Proposition

The piecewise continuous vector field (10) has a center at the equilibrium point
(0, 1, 0), on S21, if a

±
7 ̸= 0, a±4 = a±9 and one of the following conditions is satisfied:

a a−8 = −a+8 , a
−
9 = 0, and w+ = w−;

b a−7 = ±w, a−9 = 0, and w+ = w−;

c a+8 = a−8 ,
−(a−5 )

2a−7 a
−
9 + a−5 (a

−
7 )

2a−8 − a−5 a
−
8 (a

−
9 )

2 − a−5 a
−
8 w

2 + a−7 (a
−
8 )

2a−9 = 0, and
w+ = w−;

d a−5 = 0 and a−9 = 0.
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Quadratic homogeneous v.f. piecewise smooth case X ∈ XH
2

Proposition

Consider system (10) with a−5 = 1, a−7 = 1, a+8 = 3, a−8 = 1, a−9 = 0, and w+ =
w− = 2. Then, the equilibrium point p = (0, 1, 0) is a weak focus of third-order
and there exist 2 small amplitude limit cycles, on S21, bifurcating from p with a
continuous perturbation in XH

2 .

Proof.

For these values of parameters, we have

L2 = 0 and L3 = 15π/16 ̸= 0.

Hence, adding the trace parameter and using the derivation-division algorithm we
obtain 2 small amplitude crossing limit cycles bifurcating from the equilibrium point
(0, 1, 0) on S21.
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Quadratic homogeneous v.f. piecewise smooth case X ∈ XH
2

With the previous results we can see an important difference between linear and
quadratic homogeneous vector fields in the classes X and X , as only quadratic
homogeneous vector fields X ∈ XH

2 (Y ∈ XH
2 , respect.) can present isolated

(crossing, respect.) invariant cones, fulfilled of closed trajectories.

On the following we study the quadratic case.
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Quadratic v.f smooth case X ∈ X2

Quadratic vector fields

The behavior of homogeneous vector fields is the same on all spheres. But this
special property can not be extended for quadratic vector fields X2.

Example

The quadratic system

(ẋ , ẏ , ż) = (−xz − yz − z2 − z ,−z2, x2 + xy + xz + yz + x)

is such that all the spheres are invariant by X and the equilibrium points are located
at p± = (0,±ρ, 0) and at {x + y +1 = z = 0}. So, in addition to p± we have two
more when ρ > 1/

√
2 or one more when ρ = 1/

√
2.

We notice that in the above example the number of equilibrium points decrease
from 4 to 2 when the plane x + y +1 = 0 does not intersect the sphere of radius ρ.

Ana Livia Rodero Workshop on Dynamical Systems January 11-12, 2024 28 / 36



Quadratic v.f smooth case X ∈ X2

We restrict our analysis to the unit sphere

S21 = {(x , y , z) ∈ R3 : x2 + y2 + z2 = 1}.

In this case we will show that, generically, any X ∈ X2 writes in its canonical form
as

ẋ = −a1y − a2z − a4xy − a10y
2 − a5xz − (a6 + a7)yz − a8z

2,

ẏ = a1x − a3z + a4x
2 + a10xy + a6xz − a11yz − a9z

2,

ż = a2x + a3y + a5x
2 + a7xy + a11y

2 + a8xz + a9yz .

(11)
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Quadratic v.f smooth case X ∈ X2

The projected vector field Y has a weak focus on the origin when a4 = a9 and
a2a6 + a6a7 + 2a2a7 + a2

2 + a7
2 − a9

2 > 0.

We will add two extra conditions:

a9 = 0 and a2 + a7 = 1.

Then the projected vector field Y has a weak focus on the origin if, and only if,
a4 = 0 and a6 + 1 > 0. Writing w2 = a6 + 1, with w ̸= 0, we obtain

ẋ = −a1y − (1− a7)z − a4xy + a1y
2 − a5xz + (1− a7 − w2)yz − a8z

2,

ẏ = a1x + a11z + a4x
2 − a1xy + (w2 − 1)zx − a11yz ,

ż = (1− a7)x − a11y + a5x
2 + a7xy + a11y

2 + a8xz .

(12)
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Quadratic v.f smooth case X ∈ X2

Then, after a reparametrization of the time, the projected system of (14) is

u̇ = −a4
w
u − v − a1

2
u2 − a5

w
uv − a1 + 2a8

2w 2
v 2 − a4w

4
u3 +

2a7 − w 2

4
u2v

+
a4
4w

uv 2 +
w 2 + 2c7 − 2

4w 2
v 3 − a1w

2

8
u4 − a11w

4
u3v − a11

4w
uv 3 +

a1
8w 2

v 4,

v̇ = u +
(2a5 − a11)w

2
u2 + a8uv − a11

2w
v 2 − (2a7 − 1)w 2

4
u3 − a4w

2
u2v

− 2w 2 + 2a7 − 3

4
uv 2 +

w 3a11
8

u4 − w 2a1
4

u3v − a1
4
uv 3 − a11

8w
v 4.

(13)
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Quadratic v.f smooth case X ∈ X2

Theorem

The system

ẋ = −a1y − (1− a7)z − a4xy + a1y
2 − a5xz + (1− a7 − w2)yz − a8z

2,

ẏ = a1x + a11z + a4x
2 − a1xy + (w2 − 1)zx − a11yz ,

ż = (1− a7)x − a11y + a5x
2 + a7xy + a11y

2 + a8xz ,

(14)

has a center at the equilibrium point (0, 1, 0) if a4 = 0 and one of the following
conditions is satisfied:

a w = 1, a1a5 + a8a11 = 0;

b a1 = 0, a8 = 0;

c a5 = 0, a11 = 0;

d a1 = a8, a5 = −a11;

e w ̸= 1,

a1 =
w2 − 1

w2 + 1
a8, a5 =

w2 + 1

w2 − 1
a11, a7 =

1

w2 + 1
− 1

(w2 + 1)
a28 −

w2 + 1

(w2 − 1)2
a211.
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Quadratic v.f piecewise smooth case Y ∈ X2

Let X = X (x, a) ∈ X2 given by (14) where x = (x , y , z) and a = (a1, a5, a7, a8, a11,
w). Denoting a+ε± = (a1+ε±1 , . . . ,w+ε±6 ) we consider the piecewise perturbation
of X defined by

Y (x, ε) =

{
X (x; a+ ε+), z ≥ 0,

X (x; a+ ε−), z ≤ 0,
(15)

and the projected vector field associeted is of the form

PY (u, ε) =

{
PX (u; a+ ε+), v ≥ 0,

PX (u; a+ ε−), v ≤ 0,
(16)

where u = (u, v) and PX (u, 0) is given by (13).
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Quadratic v.f piecewise smooth case Y ∈ X2

Theorem

Consider the system

ẋ = −4

5
y − 13

8
z − 5

2
xz +

4

5
y2 − 59

8
yz − z2,

ẏ =
4

5
x + 2z − 4

5
xy + 8xz − 2yz ,

ż =
13

8
x − 2y +

5

2
x2 − 5

8
xy + xz + 2y2.

(17)

a (0, 1, 0) is a center.

b There exists a smooth quadratic perturbation of (17) in X such that at least 3
hyperbolic limit cycles of small amplitude bifurcate from the equilibrium point
(0, 1, 0) on S21.

c There exists a piecewise quadratic perturbation of (17) in X such that at
least 10 hyperbolic crossing limit cycles of small amplitude bifurcate from the
equilibrium point (0, 1, 0) on S21.

Note that system (17) is obtained doing a1 = 4/5, a4 = 0, a5 = 5/2, a7 =
−5/8, a8 = 1, a11 = 2, and w = 3 in (14).
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Quadratic v.f piecewise smooth case Y ∈ X2

We consider the piecewise perturbation

(a1, a5, a7, a8, a11,w) = (4/5 + ε±1 , 5/2 + ε±2 ,−5/8 + ε±3 , 1 + ε±4 , 2 + ε±5 , 3 + ε±6 )

in the projected system (13). We denote by Li (ε), with ε =
(ε+1 , . . . , ε

+
6 , ε

−
1 , . . . , ε

−
6 ), the corresponding Lyapunov constants. Clearly, when

ε = 0 the origin is a center and then Li (0) = 0 for all i . We compute the Taylor

series of the Lyapunov constants up to first-order with respect to ε, L
[1]
i (ε), and we

write
Li (ε) = L

[1]
i (ε) +O2(ε).

As the matrix formed with the coefficients of

(L
[1]
2 , . . . , L

[1]
12)

with respect to ε has rank 9 so adding the trace parameter and using the Melnikov
Theory, we can get 9 hyperbolic crossing limit cycles of small amplitude bifurcating
from the origin. Adding the sliding parameter we get a pseudo-Hopf bifurcation
and the proof follows.
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Quadratic v.f piecewise smooth case Y ∈ X2

Moltes gràcies!

¡Muchas gracias!

Thank you!
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