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Abstract

We consider a specific piecewise linear differential system in 3D, with a vector field
composed by two linear ones having continuity in the separation plane. One
dynamics (the so referred as the left one) comes from a Hopf-zero singularity, while

the other (the right one) is rather general. The system is relevant in the analysis of
boundary equilibrium bifurcations.

We study the case of saddle-focus dynamics in the right zone, and show that the
helicoidal return provided by the left zone can produce very interesting dynamics.

In particular, we show a recurrence property for the orbits that allows us to
conjecture the existence of periodic orbits as well as non-periodic attractors.




The Sevillator model

We are interested in the dynamical behaviour of the continuous piecewise
linear system given by the vector field

X = -V, X = tX-Y,
(X<0O!'Y = X-2Z (X>0{{ Y = mX-2Z2,
Z = 1 7 = dX +1.

Here the dot denotes derivatives with respect to the time variable 7, while ¢,
m and d stand for the trace, the sum of second order minors and the determinant,
respectively, of the matrix ruling the dynamics in the ‘right’ system.




We are interested in the dynamical behaviour of the continuous piecewise
linear system given by the vector field

X = -V X = tX-Y,
(X<l Y = X-2Z (X>00 VY = mX-7Z7
Z = 1, Z = dX +1.

Regarding the existence of periodic orbits for our system, we note first the
following straightforward result.

Lemma If d > 0 then the system cannot have periodic orbits.



Hereafter, we assume

X — —Y7 X — tX—Y,
(X<0O)!{ V = X-2Z (X>0{ Y = mX-7Z
7 = 1, 7 = dX +1.

Thus, the system has one real equilibrium point at the right zone, namely

(X,Y,Z) = (—1/d, —t/d, —m/d).



Periodic orbits can arise from a center at the focal plane

Under the assumption of complex eigenvalues for such equilibrium point,
we can assure the existence of periodic orbits after some bifurcation of type
focus-center-limit cycle, see Carmona et al. (2005).

In such a case, the equilibrium point of saddle-focus type becomes a saddle-
center that leads to a bounded period annulus in the focal plane, with the biggest
periodic orbit tangent to the separation plane X = 0. This critical situation
appears when m > 0 and mt — d = 0 so that, if we consider ¢ as being the
bifurcation parameter then its critical value is t,. = % < 0.




Periodic orbits can arise from a center at the focal plane

Proposition Assume 0 < m < 1 and d < 0. The system undergoes a
focus-center-limit cycle bifurcation for t = t. < 0; that is, from the linear center
configuration that exists for X > 0 when t = t¢., one orbitally asymptotically
stable limit cycle appears for t > t. and t — t. sufliciently small.
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Periodic orbits can arise from a center at infinity

Proposition Assume 0 < m < 1 and d < 0. The system undergoes a limit
cycle bifurcation from infinity for ¢ = d, so that one orbitally asymptotically
stable limit cycle of great amplitude appears for t < d and d — t sufficiently
small.

Bifurcations from a center at infinity in 3D piecewise linear systems
with two zones
Emilio Freire, Manuel Ordéiiez, Enrique Ponce * Physica D 402 (2020) 132280




Conjecture The system with 0 < m < 1 and d < 0 has one stable limit
cycle for any value of ¢t with t. <t < d.

Limit Cycle Bifurcation from a Persistent
Center at Infinity in 3D Piecewise Linear
Systems with Two Zones

Emilio Freire, Manuel Ordoéiiez, and Enrique Ponce

A. Colombo et al. (eds.), Extended Abstracts Spring 2016,
Trends in Mathematics 8, DOI 10.1007/978-3-319-55642-0_10




Taking as initial point (0, Yy, Zp) with Yy > 0,
by direct integration of the left vector field, we
can write

X(t) = —(14+Yy)sinT+ Zy(1 —cosT)+ T,
Y(r) = (14+Yy)cosT— Zysint — 1,
Z(T) — ZO—I—T,

and then it is easy to see the following result.

Lemma Any orbit of the system starting at
(0,Yp, Zp) with Yy > 0 enters the half-space

X < 0 and returns to the plane X = 0 after
a time 0 < 7 < 2m, so that X (7) = 0.




The left system has the first integral

HX,Y,2)=(X -2)"+ (Y +1)°,

so that the cylinders H(X,Y,Z) = k, which
share as their common axis the straight line
X =7.Y = —1, are invariant for X < 0.




The right dynamics

Proposition The right vector field with 0 < m < 1 and d < 0 has for

t. <t < dareal eigenvalue A < 0 and a complex eigenvalue pair o -
with o > 0 and 0 < w < 1.

We start from the characteristic polynomial as- d
soclated to its linear matrix, namely \
t
& —t&° +mé —d =0, =~
by rescaling the roots and coeflicients so that
_ oy 1/2 _ o 1/2F 7 .3/27 :
§—m./,u,t—m/.t,d—m/d,gettmgthe o —
normalized polynomial d=1

:iw,

In the plane (¢, J), for t < 0, the cuspidal region corresponding to three real roots is far from

the sectorial region of interest d < t < md.




Once we know for sure the structure of
eigenvalues, we can write for the original
parameters the equalities

t = A+ 20,
m = 2\o+ 0%+ w?,
d = Mo?+w?),

so that it is clear that A < 0, and a
simple computation gives

mt —d = 20[(\+ 0)* + w?].

AN

Preliminary bifurcation set in the plane (o, w) for a fixed value of
A (the case A = —1/2 is drawn). The black arrows indicate the
known bifurcations of periodic orbits, supporting our Conjecture.
We are interested in the region with o > 0 and ¢t < d.



Proposition Under the hypotheses0 < m <1, d < 0and t. <t < d,
if A < 0 1s the real eigenvalue of the right system, then the focal plane

I(X,Y,Z2):=XX - AY +Z+1/A=0

is invariant for its dynamics. Furthermore, any orbit of the left system
with initial point in the planar set

(X,Y,Z): X =0Y >0,Z<AY —1/)\}

will return after a time 0 < 7 < 27 to a point of the planar set

{(X,Y,Z2): X =0,Y <0,Z< )Y —1/A}




Proposition Under the hypotheses0 < m <1, d < 0and t. <t < d,
if A < 0 1s the real eigenvalue of the right system, then the focal plane

I(X,Y,Z2):=XX - AY +Z+1/A=0

is invariant for its dynamics. Furthermore, any orbit of the left system
with initial point in the planar set
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Proof We first note that

A+ 20 —1 0
(N, =\1) |20 0 4+0%2+w? 0 -1
Ao? + w?) 0 O

()‘37 _)\27)\)7

so that (A%, —\,1) is a left eigenvector associated to the eigenvalue A for the matrix of right
system. Accordingly, we have for such a vector field

d . L
d—H(X,Y,Z) = MX - AY +Z2=XX - )\Y +)\Z+1,
.

that 1is,

d
II(X,Y, Z) = (X, Y, Z).
-

Hence, the invariance of the plane II(X, Y, Z) = 0 under the flow of the right system follows.



Proof (Cont’d) We consider now the points in the half straight line with Y > 0 where this
focal plane intersects the separation plane X = 0. For any of such points (0, Yy, A\Yy — 1/\) we
compute the corresponding return point (0, Y7, Z1), namely

0 = —(1+Yy)sinT+ (AYyg—1/A)(1 —cosT)+ T,
Yl — (1—|—YQ)COST—()\Yg—l/)\)SiﬂT—l,
Zl — )\Yo—l/)\+7,

and solving the first equation for Y, we arrive to a parameterization of Y in terms of the return

time 7, namely
p(7) (1) 1 —cosT — A(T — sinT)

Yo(7) = Aq(7) ~ sinT — A(1 — cosT)

A

p(7), q(7)

Here, 0 < 7 < Tynax, Where 1. = 27 + 2arctan(1/A) € (m, 27) is the first positive zero of g(7).



Proof (Cont’d) We have

<
2
|

Yo(m)q'(7) + q(7)/A
AYo(7) — 1/\ + 1,

N
p—t
2

|

so that, for 0 < 7 < Tyax, after some computations, we get

. Zi(1) Z1(7) . A ()
o Vi) o VI o T aq(r) ’
and
427, ZUY! — 7Y A2(1 + A\2)q(7)3
2 ( ) /\3 (T) — 7 < 0.
dY; (Y7) p(7) (1 — Agq(7))

The conclusion is now a direct consequence of having for all 7 € (0, Tax) a negative second
derivative.









The maximal homoclinic orbit appears when the
H\ \ spiral on the focal plane is tangent to the Z-axis
| at the point (0,0, —1/X). The case for the values
— A=—1/2, 0 ~0.028531, w = 1/4 is drawn.




Conclusions

* In the last decades, many authors have worked in looking for chaotic
systems. Here, unexpectedly, we have found Shilnikov chaos in one of the
simplest piecewise linear models, when trying to check a natural
conjecture on existence of stable limit cycles.

* Accordingly, the mentioned conjecture has been shown to be not true.
Anyway, the intrinsical interest of the model deserves a much deeper
analysis regarding its usefulness in the characterization of boundary
equilibrium bifurcations for 3D piecewise linear systems.

* In particular, this partial study paves the way for characterizing the direct
transition to chaos in such bifurcations.




