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INTRODUCTION

The method of normal forms for smooth vector fields with an equilibrium point is very well known.

To determine normal forms for piecewise smooth vector fields is a different issue. We have different vector
flelds separated by a discontinuar line, so the change of variables depend on the zone where the change acts.
Piecewise smooth vector fields can have at the separation boundary pseudo-equilibrium points where the
vector fields do not vanish but they are true equilibrium for the whole vector field.

Moreover, to guarantee the topological equivalence of the initial vector field ant the simplified one we have to
use only change of variables which make invariant every point of the discontinuity line.

The main aim of this talk is to propose a method to obtain normal forms for planar piecewise smooth vector
fields with a discontinuity line in a neighborhood of a pseudo-focus.
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Setting of the problem

We consider the system




Setting of the problem

Main hypotheses:

The origin is a contact point
from both sides
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with invisible quadratic
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and monodromic (I—I3)

F(0,0) = F;7(0,0) =0

OF; (0,0)
Oy

F, (0,0)

F5(0,0)F57(0,0) < 0

> 0,

OF7(0,0)

Oy

F7(0,0) <0



Setting of the problem

Main hypotheses:

T\ o\ [ F{(x,9) T\ _ oty = ( F (@

(y>_F(X)_(F2_($?J)) (9>_F+() (Fz__(i’?ay
H1) Fy(0.0) = F{(0,0) = 0

(H2) aFl—ag)’O) F, (0,0) > 0, 8F1+8(y(),0) FQJF(O,O) < 0

(H3) F, (0,0)F,(0,0) <0

The origin is a pseudo-focus point of quadratic type!



Normalized initial system

(after a rescaling in time and in x for each side and assuming positive rotation sense)

Proposition 1. System (1) under hypotheses (H1)-(H3) can be written in the form

0 a® =Y+ ) apa"y’
b (x p+q>2 :
X = ~ = ~ if © <0, 3
(F2 (x) ) 1+ bipx + by y + Z T (3)
p+q=2
and
. afor —y+ Z ay xPy’
% — Fi" (x) _ p+q=2 ifx >0 (4)
Fif (x) 1+ by + bgyy + Z b xPy?
p+q2>2

where the dot represents derivatives with respect to a new time 7.



Normalized initial system

(after a rescaling in time and in x for each side and assuming positive rotation sense)

Proposition 1. System (1) under hypotheses (H1)-(H3) can be written in the form

) aipx — Y + Z Ape T’ Y

Fy (x) p+q>2 :
X = ~ = ~ if © <0, 3
(F2 (x) 1+ bipz + byy + Z T (3)
p+q=>2
and
+ + P,,9
A1nT — Y + a, I
F+ (X) 10 Y Z rq Yy
x=["1 — ) P, if x >0, (4)
FZ (X) 1+ blofB + bOly + Z bpqupyq
pt+q=>2

where the dot represents derivatives with respect to a new time 7.

Our goal is to get a locally topologically equivalent system as simple as possible: a normal form 9



Some remarks

 We must work by doing transformations on each side that preserve the points
at the discontinuity line, in order to not destroy possible closed orbits.

* The left system becomes the right one, after the change of variables and
parameters

v -z, Yoy, T -7,y = (“D)Pal, by — (1P

* Therefore, for the analysis, we only need to pay attention to one of the two
sub-systems. For definiteness, we will work with the right one.
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Quasi-homogeneus polynomial decomposition

(Key idea for controlling the influence of near-identity transformations)

Definitions

(a) A scalar polynomial function f(x) is quasi-homogeneous of type (p1,p2)
and order k if all its monomials x%*y*? satisty aip1 + aaps = k.

(b) A polynomial vector field F(x) = (Fi(x), F5(x))' is quasi-homogeneous
of type (p1,p2) and degree k if both components are quasi-homogeneous
functions of type (pi1,p2), being the first component F; of order k& + p;
while the second component F5 is of order k + ps.

11



Quasi-homogeneus polynomial decomposition

(Key idea for controlling the influence of near-identity transformations)

Definitions

(a) A scalar polynomial function f(x) is quasi-homogeneous of type (p1,p2)
and order k if all its monomials x%*y*? satisty aip1 + aaps = k.

(b) A polynomial vector field F(x) = (Fi(x), F5(x))' is quasi-homogeneous
of type (p1,p2) and degree k if both components are quasi-homogeneous
functions of type (pi1,p2), being the first component F; of order k& + p;
while the second component F5 is of order k + ps.

Example for type (2,1) quasi-homogeneity (the exponent of x is multiplied by 2, the one of y by 1):

( ao3y° + a1y )

bo2y? + biox -\
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Quasi-homogeneus polynomial decomposition

(Key idea for controlling the influence of near-identity transformations)

Definitions

(a) A scalar polynomial function f(x) is quasi-homogeneous of type (p1,p2)
and order k if all its monomials x%*y*? satisty aip1 + aaps = k.

(b) A polynomial vector field F(x) = (Fi(x), F5(x))' is quasi-homogeneous
of type (p1,p2) and degree k if both components are quasi-homogeneous
functions of type (pi1,p2), being the first component F; of order k& + p;
while the second component F5 is of order k + ps.

Example for type (2,1) quasi-homogeneity (the exponent of x is multiplied by 2, the one of y by 1):

ao3y° + a1y >

quasi-homogeneous polynomial of order 2 b02 y2 —|— bl()x
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Quasi-homogeneus polynomial decomposition

(Key idea for controlling the influence of near-identity transformations)

Definitions

(a) A scalar polynomial function f(x) is quasi-homogeneous of type (p1,p2)
and order k if all its monomials x%*y*? satisty aip1 + aaps = k.

(b) A polynomial vector field F(x) = (Fi(x), F5(x))' is quasi-homogeneous
of type (p1,p2) and degree k if both components are quasi-homogeneous
functions of type (pi1,p2), being the first component F; of order k& + p;
while the second component F5 is of order k + ps.

Example for type (2,1) quasi-homogeneity (the exponent of x is multiplied by 2, the one of y by 1):

3
-h ynomial vector of degree 1 Q03Y" T 011TY
quasi-homogeneous polynomial vector of degree 9
booy* + b1ox
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Quasi-homogeneus polynomial decomposition

(the vector field can be ordered by type (2,1) quasi-homogeneous vector polynomials of degree -1,0,1,2,...)

Proposition 2 System (3)-(4) can be written as a sum of quasi-homogeneous
polynomial vectors fields F,. of type (2,1) and degree r, as follows

= F5, () + Ff () + -+ FEy (30 + FE(0) + -

where the superscripts 4+ stand for = > 0, and the most significant term is
1 T
F-,(x)=(—y,%1) .
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Quasi-homogeneous polynomial decomposition

(the vector field can be ordered by type (2,1) quasi-homogeneous vector polynomials of degree -1,0,1,2,...)

Proposition 2 System (3)-(4) can be written as a sum of quasi-homogeneous
polynomial vectors fields F,. of type (2,1) and degree r, as follows

= F5, () + Ff () + -+ FEy (30 + FE(0) + -

where the superscripts 4+ stand for = > 0, and the most significant term is
1 T
F-,(x)=(—y,%1) .

It suffices to do the change of variables (z,y) — (¢x,cy) to get

T _ 1 —Y i a10T + agoy? 1e ap3y” + a112Y 1 g2 a04y4 + ar2wy” + azor” 4.
y 1 bOly b02y2 + blow bOByS + bllwy

and afterthat, to put € = 1.
17



Main results

Theorem 1 For any natural number n > 1, system (3)-(4) is, in a neighbour-
hood of the origin, topologically equivalent to a system of the form

< — —Y T Z :u;kyzk 4 Z Q= (X),

where the symbol ‘4’ applies for x > 0 and the symbol ‘—’ does for < 0, and
the terms G (x) are quasi-homogeneous polynomial vector fields of type (2 1)
and degree k.

18



Main results

Theorem 1 For any natural number n > 1, system (3)-(4) is, in a neighbour-
hood of the origin, topologically equivalent to a system of the form

(%),

normal form up to degree 2n-1
(separable, Hamiltonian structure)

where the symbol ‘4’ applies for x > 0 and the symbol ‘—’ does for < 0, and

the terms G (x) are quasi-homogeneous polynomial vector fields of type (2 1)
and degree k.
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Main results

(some computational issues)

The coeflicients 5, have involved expressions in terms of the original coeflicients. These
expressions reduce significantly by removing first the terms ajyx through the linear change
y — Yy — a7, leading to the new coefficients (superscripts £ omitted for brevity)

a0 =0, bi90 = a10bo1 + 010, bo1 = a10 + bo1,

while for p + q¢ > 2, we have

p p
i p+q—r o p+q—r _
Upg = Z ( )ar,p+q_r a1y 5, bpg = Z ( ) (brpt+q—r — @10 Qrptq—r) A1g -

=0
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Main results

(some computational issues)

In terms of these new tilde-coefficients, where already a;g = 0, we get

and

Qo
=
o=

|

DO

Q1
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-
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-
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—7(b

290 + 30gy — A1p T dgy (5%3 a7y + Bagyby; — 205, — T(b
+0; (‘baz 2a03 + 2(bg1)* + b1_o> + 017 — 3bg3,

where we emphasize the possible simplification when some agy or by; vanishes.

§)?)
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Quasi-homogeneous normal form approach

A short review for the smooth case

Key Lemma If the vector fields F; and G,,, are quasi-homogeneous of type p
and degree [ and m respectively, then the Lie bracket

F;,G,,| =DF;(x)G,,(x) — D G,,(x)F;(x)

is a quasi-homogeneous vector field of type p and degree [ + m.

22



Quasi-homogeneous normal form approach

A short review for the smooth case

Assume that the smooth system x = F(x) is already written as a sum of quasi-
homogeneous terms F; of degree ¢ and type p,

F(x) =Fi(x) + Frp(x) + -+ Fryp(x =) Fi(
1>1

Next, the near-identity change of variables of the form
x =w+ P,.(w),

where w = (u,v) and P,(w) is a polynomial vector field of type p and degree
r to be determined later, produces

w=[+DP,(w)] ") Fi(w+P,.(w)).
1>1

23



Quasi-homogeneous normal form approach

A short review for the smooth case
By expanding the RHS around the origin, we obtain

w=[I-DP,(w)+DP,(w)*> =] » [Fi(w)+DF;(w)P,(w)+---],

i>1

or equivalently,

contains all the terms of degree greater or equal to [ + r + 1.



Quasi-homogeneous normal form approach

A short review for the smooth case
By expanding the RHS around the origin, we obtain

w=[I-DP,(w)+DP,.(w)?— -] Z Fi(w) +DF;(w)P.(w) +---],

OT equivalenﬂ% quasi-homogeneous vector polynomials up to degree /+r-1 (not changed)

W Fiyr(w) — DP,(W)F (W) + DF(w)P,(w)] + R(w).

where the remainder

R(w)= 3 Gryr(w)

k>r+1

contains all the terms of degree greater or equal to [ + r + 1.
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Quasi-homogeneous normal form approach

A short review for the smooth case
By expanding the RHS around the origin, we obtain

w=[I-DP,(w)+DP,.(w)?— -] Z Fi(w) +DF;(w)P.(w) +---],

new gquasi-homogeneous vector polynomial of degree [+r

or equivalently,

r—1

contains all the terms of degree greater or equal to [ + r + 1. 56



Quasi-homogeneous normal form approach

A short review for the smooth case
By expanding the RHS around the origin, we obtain

w=[I-DP,(w)+DP,.(w)?— -] Z Fi(w) +DF;(w)P.(w) +---],

new gquasi-homogeneous vector polynomial of degree [+r

or equivalently,

contains all the terms of degree greater or equal to [ + r + 1. 57



Quasi-homogeneous normal form approach

A short review for the smooth case

Thus, in order to remove as much terms as possible of degree [ 4+ r we must
consider the partial or total compatibility of the homological equation

LIP(w)] i= [P, Fi](w) = Frap(w),

where we assume fixed the term F.

So far, the standard normal formal approach for smooth systems!

28



Sketch of the proof of Theorem 1

(Adapting quasi-homogeneous normal forms for pseudo-focus analysis)

 We have to work for each side separately.

* As we need to preserve the points at the discontinuity manifold, only some
possible transformations are admissible.

* Therefore, for sake of simplicity, we use near-identity transformations not
changing the second variable at all.

29



From the normal form to the return maps

30



Some results on return maps around a pseudo-focus
(Extended return maps are proper analytical involutions at the origin)

Pr,(y)

Pr(y)

We can extend the half-return maps by considering their inverses and

writing

PL(y), lny > O,
PL(y) — 07 , 1:y:()7
P, (y), ify<O,

it y > 0,
1f y =0,

it y <0,

so that these new bi-directional maps become proper involutions, that

is PL = P; ', and Pr = P;".

31



Some results on return maps around a pseudo-focus
(Extended return maps are proper analytical involutions at the origin)

We can extend the half-return maps by considering their inverses and
I writing
Pr,(y) Pr(y) ) Pr(y), ify>0, ) Prpi(y), ify>0,
Pr(y) =< 0, if y =0, Pr(y) =< 0, if y =0,
P[jl(y)7 if Yy < 0, PR(y) if Yy < 0,

so that these new bi-directional maps become proper involutions, that
is P, = P; ", and Pgr = Py ".

Proposition 3 For system (1) satisfying hypotheses (H1)-(H3) the functions
Pr, and Pgr are proper analytical involutions at the origin.

32



Computing return maps from the normal form

Proposition 6. If we introduce for k£ > 1 the notation p;- = (o, s 5 Hop_os Hog.)s

~

then the analytical involutions at the origin corresponding to the maps Pr and P; are

= _?J‘l‘z AT ‘|‘0421<;+1y%+1) Pr(y) = —yA Z(a;ky%—l—a;kJrly%Jrl),Where

k>1 k>1
L2 L i1 L2 2 . 16, .
0y =gHy, OF = ha(py) = —5(/@‘)2, ay = iy + ha(py) = FHT 27(/@‘)3
N N 64 . 4
a5 = hs(py) = =27 (2)" =z i
o 2pg

In general, for 2 < k£ < n, we have a;, = Sy hok(Mp_1)s  Qopiq = iLQk—l—l(“Z:)?

being hop and ﬁ2k+1 polynomial functions such that ﬁgk(O) = izng(O) = (.



Computing return maps from the normal form

Proposition 7 The difference map D(y) = P, Y(y) — Pr(y) is given by

D(y) = Z(Vzky% + Vopy1y? ),

k>1
where the coeflicients V; = &;r —a; for j > 2, and the values o come from the above
proposition. In particular,
V- g + V- _% +\2 —\ 2
Z—S(Mz Ha ), 3 = 9((,“2) (M2>)7
and for k > 2
2(Hag, — Hag) | ; S ; ; _
Vi = 2P G )~ B ), Varer = o (1) — o ()

where the functions izgk and iLQk+1 are the ones introduced betore. 34



Computing return maps from the normal form

Remark. Given p > 1, when u,, = pu,, for 1 <k <p—1, but ,u;p # Ho,, that
1S u;r_l = p, 1 and IL; # W, , then Vi =0 for 2 <k < 2p—1 and so

- 2( g, — p
D(y) = Z<V2ky2k + Vorp1y?™th), with Vy, = (H2p 2p)

k=p

In this case, the origin is called a weak focus or order p, being stable (resp.
unstable) if Vo, < 0 (resp. Vo, > 0). If for all £ > 1 we have u;, = u,,, then

the displacement map satisfies D(y) = 0 in a neighborhood of the origin, which
becomes a pseudo-center surrounded by a periodic annulus.

35



Application examples

1. A linear-quadratic system with pseudo-focus at the origin

r<<0lax>0
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Application examples

1. A linear-quadratic system with pseudo-focus at the origin

r<<0lax>0

= T

=

=

St

00}

& =tix —y+ oy°
5+t

t
— " (dy + 22 + 61,6 + 562),

3

t
“T(9d% + 44d 2 + 524 + 94d t1 6 + 260t16 4 50d. 6

45
+476t%.0°% 4 350t4.6° + 705%),

t
— " (135d3 4 1176d2 12 + 3508d .t 4 3392t5

945
21842 ¢4 & + 14584d, 13 6 + 23744t5.5 + 1017d2 62

-22008d4 15 6% 4+ 677245 6% 4 13600d4-t1.0° + 9822413 §°

+2695d6* + 73766¢5.6* + 25760¢4.6° + 30800°) .
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Application examples

1. A linear-quadratic system with pseudo-focus at the origin

r<<0lax>0

T — t_aj T y

Y = —1 -+ d_ﬂf
—t_,
t_—(d_+2t2),
_ﬁ(d_+2t2_) (9d- +26t2),

945

(d— 4 2t%) (135d% + 906d_t2 + 1696t2 ) .

& =tix —y+ oy°
5+t

t
— " (dy + 22 + 61,6 + 562),

3

t
“T(9d% + 44d 2 + 524 + 94d t1 6 + 260t16 4 50d. 6

45
+476t%.0°% 4 350t4.6° + 705%),

t
— " (135d3 4 1176d2 12 + 3508d .t 4 3392t5

945
21842 ¢4 & + 14584d, 13 6 + 23744t5.5 + 1017d2 62

-22008d4 15 6% 4+ 677245 6% 4 13600d4-t1.0° + 9822413 §°

+2695d6* + 73766¢5.6* + 25760¢4.6° + 30800°) .
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Application examples

1. A linear-quadratic system with pseudo-focus at the origin

Proposition. For the discontinuous piecewise linear system that becomes when
0 = 0, the following statements are true.

(a) If t, =t_ = 0 then the system is piecewise Hamiltonian, and the origin
1s a pseudo-center.

(b) For ty = —t_ # 0 and d; = d_ the origin is a pseudo-center whose
periodic annulus is symmetric with respect to the y-axis.

(¢) Fort, = —t_ # 0 and dy # d_ the origin is a weak pseudo-focus or order
2. In such a situation, there exists a small perturbation of any parameter
(ty,t_) giving rise to one periodic orbit.

(d) If t4 +¢_ # 0 then the origin is a standard pseudo-focus.



Application examples

Proposition. When 0 # 0 the following statements hold.

(a) If 0 +t4+ +1_ £ 0, then the origin is a standard pseudo-focus, being stable (resp.

unstable) when 6 +¢, +1_ < 0 (resp. > 0).

(b) When 6 +t, +t_ = 0, the origin is a pseudo-center in any of the two situations

G) (to,t_,d_ ) = (0,—06,-26%), (i) (ty,t_.ds,d_) = (—26,9,0,0).

(¢) fo+ty+t_=0,and p=d_t_+dyty +2t° +t5 +4t5¢_ +5t4t2 # 0, then

the

origin is a weak focus of order 2, being stable (resp. unstable) when p > 0 (resp.
p < 0). Then, there exist small perturbatlons of any parameter (6,t,,t_) leading

to the bifurcation of one limit cycle.

(d) If we take (t4+,t—,d+,d_) = (—(1 + p)d, ud, (uA — 1)62, (uX + X — 2)6?) for some

new parameters (A, u), excluding the cases y = —1 and A = u = 1 correspond

ing

to statement (b), then the origin is a weak pseudo-focus of order 3 or even hig’

1€Y.

40



Concluding remarks

A normal form has been proposed to analyze pseudo-equilibrium points of
pseudo-focus type.

* This canonical form allows us to compute half Poincaré maps and
characterize the orden of the pseudo-focus.

 Some linear-quadratic systems have been studied, obtaining families with a
rich variety of behaviors.

e M. Esteban, E. Freire, E. Ponce and F. Torres, On normal forms and return

maps for pseudo-focus points, J. Math. Anal. Appl. 507 (2022) 125774
(available online 25 October 2021

Gracias por su atencion!



