Principal Bautin ideal of monodromic singularities with inverse integrating factors

Isaac A. García and Jaume Giné

Workshop on Dynamical Systems - January 11-12, 2024.

向下 イヨト イヨト

We consider families of real analytic planar differential systems

$$\dot{x} = P(x, y; \lambda), \quad \dot{y} = Q(x, y; \lambda),$$
(1)

or equivalently planar vector fields

$$\mathcal{X} = P(x, y; \lambda)\partial_x + Q(x, y; \lambda)\partial_y$$

э

We consider families of real analytic planar differential systems

$$\dot{x} = P(x, y; \lambda), \quad \dot{y} = Q(x, y; \lambda),$$
 (1)

or equivalently planar vector fields

$$\mathcal{X} = P(x, y; \lambda)\partial_x + Q(x, y; \lambda)\partial_y.$$

We assume:

• The family depends analytically on the parameters $\lambda \in \mathbb{R}^{p}$.

向下 イヨト イヨト

We consider families of real analytic planar differential systems

$$\dot{x} = P(x, y; \lambda), \quad \dot{y} = Q(x, y; \lambda),$$
 (1)

or equivalently planar vector fields

$$\mathcal{X} = P(x, y; \lambda)\partial_x + Q(x, y; \lambda)\partial_y.$$

We assume:

- The family depends analytically on the parameters $\lambda \in \mathbb{R}^{p}$.
- (x, y) = (0, 0) is a monodromic singularity of X, that is local orbits turn around the origin for any λ ∈ Λ ⊂ ℝ^p.

向下 イヨト イヨト

We consider families of real analytic planar differential systems

$$\dot{x} = P(x, y; \lambda), \quad \dot{y} = Q(x, y; \lambda),$$
 (1)

or equivalently planar vector fields

$$\mathcal{X} = P(x, y; \lambda)\partial_x + Q(x, y; \lambda)\partial_y.$$

We assume:

- The family depends analytically on the parameters $\lambda \in \mathbb{R}^{p}$.
- (x, y) = (0, 0) is a monodromic singularity of X, that is local orbits turn around the origin for any λ ∈ Λ ⊂ ℝ^p.
- IN PRINCIPLE: Since X is analytic, independently l'Iyashenko and Écalle, prove that the singularity only can be either a center or a focus.

The stability of the monodromic singularity is not solved by the blow-up procedure.

向下 イヨト イヨト

The stability of the monodromic singularity is not solved by the blow-up procedure.

Poincaré-Lyapunov center-focus problem

To discern the subsets of Λ corresponding to a center and a focus.

向下 イヨト イヨト

The weighted polar blow-up

Given $(p,q) \in W(\mathbf{N}(\mathcal{X}))$, we take the blow-up $(x,y) \mapsto (\rho,\varphi)$ given by

$$x = \rho^{p} \cos \varphi, \quad y = \rho^{q} \sin \varphi.$$
(2)

(日) (同) (E) (E) (E)

In coordinates (ρ, φ) , \mathcal{X} is written as

$$\dot{
ho} = R(arphi,
ho), \ \dot{arphi} = \Theta(arphi,
ho).$$

・回 ・ ・ ヨ ・ ・ ヨ ・

In coordinates (ρ, φ) , \mathcal{X} is written as

$$\dot{
ho} = R(arphi,
ho), \ \dot{arphi} = \Theta(arphi,
ho).$$

We consider the differential equation

$$\frac{d\rho}{d\varphi} = \mathcal{F}(\varphi, \rho), \qquad (3)$$

on the cylinder

$$\mathcal{C} \,=\, \left\{ (arphi,
ho)\in \mathbb{S}^1 imes \mathbb{R}\,:\, \mathsf{0}\leq
ho \ll 1
ight\}, ext{ with } \mathbb{S}^1=\mathbb{R}/(2\pi\mathbb{Z}),$$

向下 イヨト イヨト

In coordinates (ρ, φ) , \mathcal{X} is written as

$$\dot{
ho} = R(\varphi,
ho), \quad \dot{\varphi} = \Theta(\varphi,
ho).$$

We consider the differential equation

$$\frac{d\rho}{d\varphi} = \mathcal{F}(\varphi, \rho) \,, \tag{3}$$

on the cylinder

$$\mathcal{C} \ = \ \left\{ (arphi,
ho) \in \mathbb{S}^1 imes \mathbb{R} \ : \ \mathsf{0} \le
ho \ll 1
ight\}, ext{ with } \mathbb{S}^1 = \mathbb{R}/(2\pi\mathbb{Z}),$$

F(φ, ρ) is well defined in C\Θ⁻¹(0) being the zero angular speed curve

$$\Theta^{-1}(0) = \{(\varphi, \rho) \in \mathcal{C} : \Theta(\varphi, \rho) = 0, \rho \ge 0\},$$
(4)

高 とう モン・ く ヨ と

In coordinates (
ho, arphi), $\mathcal X$ is written as

$$\dot{\rho} = R(\varphi, \rho), \quad \dot{\varphi} = \Theta(\varphi, \rho).$$

We consider the differential equation

$$\frac{d\rho}{d\varphi} = \mathcal{F}(\varphi, \rho), \qquad (3)$$

on the cylinder

$$\mathcal{C} \ = \ \left\{ (arphi,
ho) \in \mathbb{S}^1 imes \mathbb{R} \ : \ \mathsf{0} \le
ho \ll 1
ight\}, ext{ with } \mathbb{S}^1 = \mathbb{R}/(2\pi\mathbb{Z}),$$

F(φ, ρ) is well defined in C\Θ⁻¹(0) being the zero angular speed curve

$$\Theta^{-1}(0) = \{(\varphi, \rho) \in \mathcal{C} : \Theta(\varphi, \rho) = 0, \rho \ge 0\},$$
(4)

• We define the set of (p, q)-characteristic directions $\Omega_{pq} = \{\varphi^* \in \mathbb{S}^1 : \Theta(\varphi^*, 0) = 0\}.$

The Poincaré map $\Pi : \Sigma \subset (\mathbb{R}^+, 0) \to (\mathbb{R}^+, 0)$ is defined in the transversal section $\Sigma = \{(x, 0) \in \mathbb{R}^2 : 0 < x \ll 1\}.$

The Poincaré map $\Pi : \Sigma \subset (\mathbb{R}^+, 0) \to (\mathbb{R}^+, 0)$ is defined in the transversal section $\Sigma = \{(x, 0) \in \mathbb{R}^2 : 0 < x \ll 1\}$. Let $\Phi(\varphi; \rho_0)$ be the solution of the Cauchy problem (3) with initial condition $\Phi(0; \rho_0) = \rho_0 > 0$ sufficiently small. Then we reparameterize Σ by $x = \rho_0^p$ so that

 $\Pi(\rho_0) = \Phi(2\pi, \rho_0).$

The Poincaré map $\Pi : \Sigma \subset (\mathbb{R}^+, 0) \to (\mathbb{R}^+, 0)$ is defined in the transversal section $\Sigma = \{(x, 0) \in \mathbb{R}^2 : 0 < x \ll 1\}$. Let $\Phi(\varphi; \rho_0)$ be the solution of the Cauchy problem (3) with initial condition $\Phi(0; \rho_0) = \rho_0 > 0$ sufficiently small. Then we reparameterize Σ by $x = \rho_0^p$ so that

 $\Pi(\rho_0) = \Phi(2\pi, \rho_0).$

Medvedeva proves that Π has a Dulac asymptotic expansion:

$$\Pi(x) = \eta_1 x + \sum_j P_j(\log x) x^{\nu_j},$$

where $\eta_1 > 0$, the exponents $\nu_j > 1$ grow to infinity and the coefficients of the P_j are polynomials whose coefficients depend analytically on the coefficients of \mathcal{X} .

The Poincaré map $\Pi : \Sigma \subset (\mathbb{R}^+, 0) \to (\mathbb{R}^+, 0)$ is defined in the transversal section $\Sigma = \{(x, 0) \in \mathbb{R}^2 : 0 < x \ll 1\}$. Let $\Phi(\varphi; \rho_0)$ be the solution of the Cauchy problem (3) with initial condition $\Phi(0; \rho_0) = \rho_0 > 0$ sufficiently small. Then we reparameterize Σ by $x = \rho_0^p$ so that

 $\Pi(\rho_0) = \Phi(2\pi, \rho_0).$

Medvedeva proves that Π has a Dulac asymptotic expansion:

$$\Pi(x) = \eta_1 x + \sum_j P_j(\log x) x^{\nu_j},$$

where $\eta_1 > 0$, the exponents $\nu_j > 1$ grow to infinity and the coefficients of the P_j are polynomials whose coefficients depend analytically on the coefficients of \mathcal{X} .

Characterization of centers: $\Pi(x) = x$.

Inverse integrating factors on $C \setminus \Theta^{-1}(0)$

A not locally null real-valued $C^1(C \setminus \Theta^{-1}(0))$ function $V(\varphi, \rho)$ is an *inverse integrating factor* of (3) in $C \setminus \Theta^{-1}(0)$ if it is a solution of the linear partial differential equation

$$\frac{\partial V}{\partial \varphi}(\varphi,\rho) + \frac{\partial V}{\partial \rho}(\varphi,\rho) \mathcal{F}(\varphi,\rho) = \frac{\partial \mathcal{F}}{\partial \rho}(\varphi,\rho) V(\varphi,\rho) \,.$$
(5)

- 本部 ト イヨ ト - - ヨ

Inverse integrating factors on $C \setminus \Theta^{-1}(0)$

A not locally null real-valued $C^1(C \setminus \Theta^{-1}(0))$ function $V(\varphi, \rho)$ is an *inverse integrating factor* of (3) in $C \setminus \Theta^{-1}(0)$ if it is a solution of the linear partial differential equation

$$\frac{\partial V}{\partial \varphi}(\varphi,\rho) + \frac{\partial V}{\partial \rho}(\varphi,\rho) \mathcal{F}(\varphi,\rho) = \frac{\partial \mathcal{F}}{\partial \rho}(\varphi,\rho) V(\varphi,\rho).$$
(5)

Laurent inverse integrating factors

Are inverse integrating factors that can be expanded in convergent Laurent series about $\rho = 0$:

$$V(\varphi,\rho) = \sum_{i \ge m} v_i(\varphi)\rho^i, \quad m \in \mathbb{Z}, \quad v_m(\varphi) \neq 0,$$
(6)

whose coefficients are C^1 functions $v_i : \mathbb{S}^1 \setminus \Omega_{pq} \to \mathbb{R}$.

Given the weights $(p,q) \in W(\mathbf{N}(\mathcal{X}))$, we define the subset $\Lambda_{pq} \subset \Lambda$ of (p,q)-critical parameters as

$$\Lambda_{\rho q} = \{\lambda \in \Lambda : \Theta^{-1}(0) \setminus \{\rho = 0\} \neq \emptyset\}.$$
(7)

(本部) (注) (注) (注)

Given the weights $(p,q) \in W(\mathbf{N}(\mathcal{X}))$, we define the subset $\Lambda_{pq} \subset \Lambda$ of (p,q)-critical parameters as

$$\Lambda_{\rho q} = \{\lambda \in \Lambda : \Theta^{-1}(0) \setminus \{\rho = 0\} \neq \emptyset\}.$$
(7)

Remark

The fundamental equation

Theorem 1

In the restricted parameter space $\Lambda \setminus \Lambda_{pq}$ equation

$$V(0,\Pi(\rho_0)) = V(0,\rho_0) \Pi'(\rho_0)$$
(8)

holds.

Isaac A. García and Jaume Giné Principal Bautin ideal of monodromic singularities with inverse

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

The fundamental equation

Theorem 1

In the restricted parameter space $\Lambda \setminus \Lambda_{pq}$ equation

$$V(0,\Pi(\rho_0)) = V(0,\rho_0) \Pi'(\rho_0)$$
(8)

holds.

Remark

- This Theorem was proved in the particular case that $\{\rho = 0\}$ is a periodic orbit, that is when $\Omega_{\rho q} = \emptyset$ by García, Giacomini and Grau in 2010.
- We have improved it allowing that $\{\rho = 0\}$ be a polycycle, that is, $\Omega_{pq} \neq \emptyset$ but we keeping in $\Lambda \setminus \Lambda_{pq}$.

э

Remark

We are going to use in (8) some results of the (two-dimensional) power geometry developed by Bruno designed to classify asymptotic expansions (including Puiseux series as particular case) of invariant branches at singularities of analytic planar vector fields.

・ 同 ト ・ ヨ ト ・ ヨ ト

Remark

We are going to use in (8) some results of the (two-dimensional) power geometry developed by Bruno designed to classify asymptotic expansions (including Puiseux series as particular case) of invariant branches at singularities of analytic planar vector fields.

Remark

In the proof of the following theorem we re-prove, under the conditions of the theorem, the well-known fact that $\Pi(\rho) = \eta_1 \rho + o(\rho)$.

イロト イポト イヨト イヨト

Let the origin be a monodromic singularity of \mathcal{X} with parameters in Λ and $0 \notin \Omega_{pq}$. Assume that equation (3) has a Laurent inverse integrating factor $V(\varphi, \rho)$ with multiplicity m. Then restricted to the parameter space $\Lambda \setminus \Lambda_{pq}$ the map Π has a formal power series

expansion
$$\left| \Pi(
ho) = \sum_{i \geq 1} \eta_i
ho^i \right|$$

Let the origin be a monodromic singularity of \mathcal{X} with parameters in Λ and $0 \notin \Omega_{pq}$. Assume that equation (3) has a Laurent inverse integrating factor $V(\varphi, \rho)$ with multiplicity m. Then restricted to the parameter space $\Lambda \setminus \Lambda_{pq}$ the map Π has a formal power series

expansion $\Pi(\rho) = \sum_{i \ge 1} \eta_i \rho^i$. Moreover Π has the following

structure:

(i) If $m \leq 0$ then the origin is a center.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let the origin be a monodromic singularity of \mathcal{X} with parameters in Λ and $0 \notin \Omega_{pq}$. Assume that equation (3) has a Laurent inverse integrating factor $V(\varphi, \rho)$ with multiplicity m. Then restricted to the parameter space $\Lambda \setminus \Lambda_{pq}$ the map Π has a formal power series

expansion $\Pi(\rho) = \sum_{i \ge 1} \eta_i \rho^i$. Moreover Π has the following

structure:

(i) If $m \leq 0$ then the origin is a center.

(ii) If m > 1 then $\Pi(\rho) = \rho + \eta_m \rho^m (1 + O(\rho))$. In particular, if $\eta_m = 0$ then the origin is a center.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let the origin be a monodromic singularity of \mathcal{X} with parameters in Λ and $0 \notin \Omega_{pq}$. Assume that equation (3) has a Laurent inverse integrating factor $V(\varphi, \rho)$ with multiplicity m. Then restricted to the parameter space $\Lambda \setminus \Lambda_{pq}$ the map Π has a formal power series

expansion $\Pi(\rho) = \sum_{i \ge 1} \eta_i \rho^i$. Moreover Π has the following

structure:

(i) If $m \leq 0$ then the origin is a center.

(ii) If m > 1 then $\Pi(\rho) = \rho + \eta_m \rho^m (1 + O(\rho))$. In particular, if $\eta_m = 0$ then the origin is a center.

(iii) If m = 1 and $\eta_1 = 1$ then the origin is a center.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

The function G(r)

Taking the cylinder $C = I \times S^1$ with $I = \{0\} \cup I^+$ and I^+ is a sufficiently small positive half-neighborhood of the origin, we define the function $G : I^+ \to \mathbb{R}$ by

$$G(r) = \int_0^{2\pi} \frac{\mathcal{F}(\varphi, r)}{V(\varphi, r)} d\varphi.$$
 (9)

・ 同 ト ・ ヨ ト ・ ヨ ト

The function G(r)

Taking the cylinder $C = I \times S^1$ with $I = \{0\} \cup I^+$ and I^+ is a sufficiently small positive half-neighborhood of the origin, we define the function $G : I^+ \to \mathbb{R}$ by

$$G(r) = \int_0^{2\pi} \frac{\mathcal{F}(\varphi, r)}{V(\varphi, r)} d\varphi.$$
(9)

Remark

 (i) We can prove that, if the origin is a monodromic singularity of *X* and V(φ, ρ) is a Laurent inverse integrating factor then V⁻¹(0)\{ρ = 0} = Ø.

イロト イポト イヨト イヨト

The function G(r)

Taking the cylinder $C = I \times S^1$ with $I = \{0\} \cup I^+$ and I^+ is a sufficiently small positive half-neighborhood of the origin, we define the function $G : I^+ \to \mathbb{R}$ by

$$G(r) = \int_0^{2\pi} \frac{\mathcal{F}(\varphi, r)}{V(\varphi, r)} d\varphi.$$
(9)

Remark

 (i) We can prove that, if the origin is a monodromic singularity of *X* and V(φ, ρ) is a Laurent inverse integrating factor then V⁻¹(0)\{ρ = 0} = Ø.

(ii) In particular, G is well defined in $\Lambda \setminus \Lambda_{pq}$.

How to compute η_m

Theorem 3

Under the conditions of Theorem 2, $G(r) = \mathfrak{g} \in \mathbb{R}$ is a constant in I^+ and $\log \eta_1 = \mathfrak{g}$ when m = 1 and $\eta_m = \mathfrak{g}$ if m > 1.

(《圖》 《문》 《문》 - 문

How to compute η_m

Theorem 3

Under the conditions of Theorem 2, $G(r) = \mathfrak{g} \in \mathbb{R}$ is a constant in I^+ and $\log \eta_1 = \mathfrak{g}$ when m = 1 and $\eta_m = \mathfrak{g}$ if m > 1.

Remark

Although $\mathfrak{g} = \lim_{r \to 0^+} G(r)$ we remark that when $\Omega_{pq} \neq \emptyset$ then, in general,

$$\lim_{r\to 0^+} G(r) \neq \int_0^{2\pi} \lim_{r\to 0^+} \frac{\mathcal{F}(\varphi, r)}{V(\varphi, r)} d\varphi.$$

How to compute η_m

Theorem 3

Under the conditions of Theorem 2, $G(r) = \mathfrak{g} \in \mathbb{R}$ is a constant in I^+ and $\log \eta_1 = \mathfrak{g}$ when m = 1 and $\eta_m = \mathfrak{g}$ if m > 1.

Remark

Although $\mathfrak{g} = \lim_{r \to 0^+} G(r)$ we remark that when $\Omega_{pq} \neq \emptyset$ then, in general,

$$\lim_{r\to 0^+} G(r) \neq \int_0^{2\pi} \lim_{r\to 0^+} \frac{\mathcal{F}(\varphi, r)}{V(\varphi, r)} d\varphi.$$

In general, G cannot be continuously extended to the origin. Indeed G(0) does not exist when m > 1 whereas for m = 1 one gets G(0) = PV ∫₀^{2π} F₁(φ)dφ, which may exists or not and even when exists it can be different from g.

- Let $E \subset \Lambda$ be an open subset such that $N(\mathcal{X}|_E)$ is fixed.
- The Poincaré-Lyapunov quantities η_i(λ) are analytic functions on *E*.
- Given the formal power series $\Pi(\rho; \lambda) = \sum_{i \ge 1} \eta_i(\lambda)\rho^i$, the Bautin ideal defined as $\mathcal{B} = \langle \eta_1 1, \eta_2, \eta_3, \dots, \rangle$ is finitely generated.

Under the assumptions of Theorem 2, the Bautin ideal \mathcal{B} of $\mathcal{X}|_E$ is principal and given by $\mathcal{B} = \langle \eta_1(\lambda) - 1 \rangle$ if m = 1 or $\mathcal{B} = \langle \eta_m(\lambda) \rangle$ when $m \geq 2$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Under the assumptions of Theorem 2, the Bautin ideal \mathcal{B} of $\mathcal{X}|_E$ is principal and given by $\mathcal{B} = \langle \eta_1(\lambda) - 1 \rangle$ if m = 1 or $\mathcal{B} = \langle \eta_m(\lambda) \rangle$ when $m \ge 2$. Moreover, the following holds:

(i) When Π is analytic at $\rho = 0$ then the cyclicity of the origin, with respect to perturbation within the family $\mathcal{X}|_{E}$, is 0.

・ロン ・回と ・ヨン ・ヨン

Under the assumptions of Theorem 2, the Bautin ideal \mathcal{B} of $\mathcal{X}|_E$ is principal and given by $\mathcal{B} = \langle \eta_1(\lambda) - 1 \rangle$ if m = 1 or $\mathcal{B} = \langle \eta_m(\lambda) \rangle$ when $m \geq 2$.

Moreover, the following holds:

- (i) When Π is analytic at $\rho = 0$ then the cyclicity of the origin, with respect to perturbation within the family $\mathcal{X}|_{\mathcal{E}}$, is 0.
- (ii) If m = 1 then $\Pi(\rho)$ is analytic.

イロト イポト イヨト イヨト

Under the assumptions of Theorem 2, the Bautin ideal \mathcal{B} of $\mathcal{X}|_E$ is principal and given by $\mathcal{B} = \langle \eta_1(\lambda) - 1 \rangle$ if m = 1 or $\mathcal{B} = \langle \eta_m(\lambda) \rangle$ when $m \ge 2$.

Moreover, the following holds:

- (i) When Π is analytic at $\rho = 0$ then the cyclicity of the origin, with respect to perturbation within the family $\mathcal{X}|_{\mathcal{E}}$, is 0.
- (ii) If m = 1 then $\Pi(\rho)$ is analytic.
- (iii) If m > 1 and the residue $\operatorname{Res}(1/V(0, \rho), 0) = 0$ then $\Pi(\rho)$ is analytic at $\rho = 0$.

We consider the 1-parameter family

$$\dot{x} = (x-y)(x^2+y^2) - \lambda(x+y), \ \dot{y} = (x+y)(x^2+y^2) + \lambda(x-y).$$

(本間) (本語) (本語)

We consider the 1-parameter family

$$\dot{x} = (x-y)(x^2+y^2) - \lambda(x+y), \ \dot{y} = (x+y)(x^2+y^2) + \lambda(x-y).$$

Inverse integrating factor $v(x, y; \lambda) = (x^2 + y^2)f(x, y; \lambda)$ where $f(x, y; \lambda) = x^2 + y^2 - \lambda$.

- ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

We consider the 1-parameter family

$$\dot{x} = (x-y)(x^2+y^2) - \lambda(x+y), \ \dot{y} = (x+y)(x^2+y^2) + \lambda(x-y).$$

- Inverse integrating factor $v(x, y; \lambda) = (x^2 + y^2)f(x, y; \lambda)$ where $f(x, y; \lambda) = x^2 + y^2 - \lambda$.
- $\Lambda = \mathbb{R}$: When $\lambda \neq 0$, the system has a non-degenerate focus at the origin whose stability depends on the sign of λ . When $\lambda = 0$ it has a unstable degenerate (orbitally linearizable) focus at the origin.

(4月) (4日) (4日) 日

We consider the 1-parameter family

$$\dot{x} = (x-y)(x^2+y^2) - \lambda(x+y), \ \dot{y} = (x+y)(x^2+y^2) + \lambda(x-y).$$

- Inverse integrating factor $v(x, y; \lambda) = (x^2 + y^2)f(x, y; \lambda)$ where $f(x, y; \lambda) = x^2 + y^2 - \lambda$.
- $\Lambda = \mathbb{R}$: When $\lambda \neq 0$, the system has a non-degenerate focus at the origin whose stability depends on the sign of λ . When $\lambda = 0$ it has a unstable degenerate (orbitally linearizable) focus at the origin.
- For λ > 0, f(x, y; λ) = 0 is limit cycle which bifurcates from the origin. Contradicts Theorem 4?

(本間) (注) (注) (注)

We consider the 1-parameter family

$$\dot{x} = (x-y)(x^2+y^2) - \lambda(x+y), \ \dot{y} = (x+y)(x^2+y^2) + \lambda(x-y).$$

- Inverse integrating factor $v(x, y; \lambda) = (x^2 + y^2)f(x, y; \lambda)$ where $f(x, y; \lambda) = x^2 + y^2 - \lambda$.
- $\Lambda = \mathbb{R}$: When $\lambda \neq 0$, the system has a non-degenerate focus at the origin whose stability depends on the sign of λ . When $\lambda = 0$ it has a unstable degenerate (orbitally linearizable) focus at the origin.
- For λ > 0, f(x, y; λ) = 0 is limit cycle which bifurcates from the origin. Contradicts Theorem 4?
- $E = \mathbb{R}^+$: Although $W(\mathbf{N}(\mathcal{X})) = \{(1,1)\}$, one has that $\mathbf{N}(\mathcal{X})$ is not invariant in Λ because it is formed by the edge with endpoints (2,0) and (0,2) when $\lambda > 0$ whereas the edge changes having now endpoints (4,0) and (0,4) when $\lambda = 0$.

Using polar coordinates:

$$\dot{\rho} = \rho(-\lambda + \rho^2), \quad \dot{\varphi} = \lambda + \rho^2$$

and, using Bautin method:

$$\eta_1(\lambda) = \left\{ egin{array}{cc} \exp(-2\pi) & ext{if} & \lambda > 0, \\ \exp(2\pi) & ext{if} & \lambda = 0. \end{array}
ight.$$

回 と く ヨ と く ヨ と

MANY THANKS FOR YOUR ATTENTION !!

Isaac A. García and Jaume Giné Principal Bautin ideal of monodromic singularities with inverse

- ∢ ⊒ ⊳