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Introduction

We consider families of real analytic planar differential systems

ẋ = P(x , y ;λ), ẏ = Q(x , y ;λ), (1)

or equivalently planar vector fields

X = P(x , y ;λ)∂x + Q(x , y ;λ)∂y .

We assume:

The family depends analytically on the parameters λ ∈ Rp.

(x , y) = (0, 0) is a monodromic singularity of X , that is local
orbits turn around the origin for any λ ∈ Λ ⊂ Rp.

The characterization of the monodromic set Λ is usually done
by the blow-up process (or σ-process) developed by Dumortier.
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ẋ = P(x , y ;λ), ẏ = Q(x , y ;λ), (1)

or equivalently planar vector fields

X = P(x , y ;λ)∂x + Q(x , y ;λ)∂y .

We assume:

The family depends analytically on the parameters λ ∈ Rp.

(x , y) = (0, 0) is a monodromic singularity of X , that is local
orbits turn around the origin for any λ ∈ Λ ⊂ Rp.

The characterization of the monodromic set Λ is usually done
by the blow-up process (or σ-process) developed by Dumortier.
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Stability and center-focus problem

Algaba et al give an algorithmic procedure to determine the
parameter restrictions that characterize Λ based on the structure of
the Newton diagram N(X ) of the vector field X .

The stability of the monodromic singularity is not solved by the
blow-up procedure.

Stability problem

To discern the subsets of Λ corresponding to a stable or unstable
singularity.

Poincaré-Lyapunov center-focus problem

To discern the subsets of Λ corresponding to a center and a focus.
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Degrees of degeneracy in the center-focus problem

We let DX (0, 0) denotes the Jacobian matrix of X at the origin.

Non-degenerate case: When DX (0, 0) ̸≡ 0 has pure
imaginary eigenvalues different from zero the center-focus
problem was solved by the Poincaré and Lyapunov works.

Nilpotent case: When DX (0, 0) ̸≡ 0 has a double zero
eigenvalue the center-focus problem was solved by Moussu.

Degenerate case: When DX (0, 0) ≡ 0 the stability and
center-focus problem remains open except few specific cases.
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Degrees of degeneracy in the degenerate center-focus
problem

The desingularization via blow-ups brings the singularity at
the origin into a monodromic polycycle Γ.

The less degenerate case corresponds to the situation in which
Γ is a periodic orbit, hence the Poincaré map is analytic.

The monodromic class Mo(p,q) is when we reach the periodic
orbit Γ = {ρ = 0} via a (p, q)–weighted polar blow-up.

To this class belong all the monodromic singularties when the
vector field has non-vanishing associated linear part.

The Mo(p,q) monodromic class is the trivial one because the
classical Poincaré– Lyapunov approach to compute the first
terms in the Taylor expansion of Π works with minor
modifications.

We focus in the case when Γ contains singularities of the
vector field.

Isaac A. Garćıa and Jaume Giné The Poincaré map at singularities of planar vector fields



Degrees of degeneracy in the degenerate center-focus
problem

The desingularization via blow-ups brings the singularity at
the origin into a monodromic polycycle Γ.

The less degenerate case corresponds to the situation in which
Γ is a periodic orbit, hence the Poincaré map is analytic.
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The Poincaré map Π

The Poincaré map Π has a linear part, that is, it can be
expressed as Π(x ;λ) = η(λ)x + o(x) with leading coefficient
η > 0.

When η ̸= 1 the origin of (1) has a (structurally stable)
When η = 1 we need more terms in the asymptotic Dulac
expansion of Π to solve the stability problem at the origin of
(1).

The computation of η is cumbersome and only possible under
some nondegeneracy assumptions.

In this work we obtain one explicit formula for η that unifies the
various expressions found in the literature of the different
monodromic classes studied up to now.
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The Newton diagram of X

Given an analytic vector field X = P(x , y)∂x + Q(x , y)∂y with

P(x , y) =
∑

(i ,j)∈N2

αijx
iy j−1, Q(x , y) =

∑
(i ,j)∈N2

βijx
i−1y j ,

supp(X ) = {(i , j) ∈ N2 : (αij , βij) ̸= (0, 0)}.
The Newton diagram N(X ) of X is the boundary of the
convex hull of the set ⋃

(i ,j)∈supp(X )

{(i , j) + R2
+}.

Each edge of N(X ) has associated the weights (p, q) ∈ N2

with p and q coprime such that q/p of the the tangent angle
between that segment and the ordinate axis.

W (N(X )) ⊂ N2 is the set containing all the weights associated to
the edges in N(X ).
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The Newton diagram of X

We consider a monodromic singularity at the origin of X with fixed
Newton diagram N(X ) with weights
W (N(X )) = {(p1, q1), (p2, q2), . . . , (pℓ, qℓ)} ordered by
q1/p1 < q2/p2 < · · · < qℓ/pℓ. In this way the edge i has weights
(pi , qi ) and the its upper connecting edge is the edge i − 1.

Given a vertex of coordinates (i , j) ∈ supp(X ), we define its vector
coefficient (a, b) = (αij , βij).

We say that the vertex of N(X ) connecting the edges i − 1 and i
and having vector coefficient (ai , bi ) is a nondegenerate vertex if
pibi − qiai ̸= 0 and pi−1bi − qi−1ai ̸= 0.
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The weighted polar blow-up

For each (pi , qi ) ∈ W (N(X )) we have a (pi , qi )-quasihomogeneous
expansions of X = Xri + · · · , where the leading vector field
Xr = Ppi+ri (x , y)∂x + Qqi+ri (x , y)∂y is a
(pi , qi )-quasihomogeneous vector field of degree ri .

Associated to the weights (pi , qi ) we perform the weighted polar
blow-up (x , y) 7→ (ρ, φ) given by

(x , y) = (ρpi cosφ, ρqi sinφ), (2)

transforming (1) into the differential equation

dρ

dφ
=

Ri (φ, ρ)

Θi (φ, ρ)
=

Fri (φ)ρ+ O(ρ2)

Gri (φ) + O(ρ)
, i = 1, . . . , ℓ. (3)
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The weighted polar blow-up

The differential equation (3) is defined in C\Θ−1
i (0) being the

cylinder C =
{
(φ, ρ) ∈ S1 × R : 0 ≤ ρ≪ 1

}
with S1 = R/(2πZ).

φ = φ∗ is a (pi , qi )-characteristic direction for the origin of X if
Gri (φ

∗) = 0 and we define Ωpiqi ⊂ S1 as the set of all the
(pi , qi )-characteristic directions.

By monodromy, Gri is sign-defined on S1 and Ωpiqi = G−1
ri

(0).
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The Cauchy principal value of an improper integral

Given a continuous function f defined in I ⊂ [0, 2π]\Ω with
Ω = {θ∗1, . . . , θ∗ℓ}, the Cauchy principal value of the integral∫
I f (θ) dθ is defined as

PV

∫
I
f (θ) dθ = lim

ε→0+

∫
Iε

f (θ) dθ,

when the limit exists. Here we have used the notation Iε = I\Jε
with Jε = ∪ℓ

i=1(θ
∗
i − ε, θ∗i + ε).

Related to equation (3), we define the quantities

ξpiqi = PV

∫ 2π

0

Fri (φ)

Gri (φ)
dφ, i = 1, . . . , ℓ, (4)

if they exist, and they will play a fundamental role in the results
presented below.
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The main result

The goal of this work is to give explicit conditions that guarantee
that the linear part of the Poincaré map Π(x) = ηx + o(x) has
leading coefficient

η = exp

(
±

ℓ∑
i=1

λi ξpiqi

)
, (5)

with

λ1 = 1, λi =
pibi − qiai

pi−1bi − qi−1ai
, i = 2, . . . , ℓ, (6)

where (ai , bi ) is the vector coefficient of the vertex connecting the
edges i − 1 and i for i = 2, . . . , ℓ. In the formula (5) the positive
sign is taken when the flow rotates counterclockwise (that is
Gri (φ) ≥ 0 in S1 for all i = 1, . . . , ℓ) and the negative sign
otherwise.
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Parameterizations of the transversal section

We reparameterize the transversal section
Σ = {(x0, 0) ∈ R2 : 0 < x0 ≪ 1} where Π is defined by x0 = ρpi0 .
Next we consider the solution Φi (φ; ρ0) of the Cauchy problem (3)
with initial condition Φi (0; ρ0) = ρ0 > 0 sufficiently small.

We define their associated Poincaré map Πi (ρ0) = Φi (2π, ρ0) so
that Π(x0) = (Πi (ρ0))

pi . The next theorem relates the leading
linear terms of Πi and Πj with i ̸= j under some nondegenerate
conditions.
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The difficulty of proof expression (5)

Theorem

Let X having a monodromic singular point at the origin and
consider two arbitrary weights {(p1, q1), (p2, q2)} ⊂ W (N(X )).
The Poincaré maps Π1(ρ0) and Π2(r0) written in weighted polar
coordinates (ρ, φ) and (r , ψ) associated to the chosen weights are
composition of regular transition maps and maps
∆ε

i : {φ∗
i − ε} → {φ∗

i + ε} and δεj : {ψ∗
j − ε} → {ψ∗

j + ε}
corresponding to the passage near the singularities on the
polycycles {ρ = 0} and {r = 0}, respectively, with characteristic
directions φ∗

i ∈ Ωp1q1 and ψ∗
j ∈ Ωp2q2 .
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The difficulty of proof expression (5)

Theorem

We assume that the following conditions hold:

(i) The Cauchy principal values ξpiqi exist for i = 1, 2.

(ii) All the maps ∆ε
i (ρ0) and δ

ε
j (r0) have linear leading terms

whose limit when ε→ 0+ exist for i = 1, . . . ,#Ωp1q1 and
j = 1, . . . ,#Ωp2q2 .

Then there are γ1 and γ2 such that the Poincaré maps
Π1(ρ0) = η1ρ0 + o(ρ0) and Π2(r0) = η2r0 + o(r0) have leading
coefficients

η1 = exp(γ1 + ξp1q1), η2 = exp(γ2 + ξp2q2), (7)

related by η = ηp11 = ηp22 .
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The difficulty of proof expression (5)

Remark

A consequence of the previous Theorem is that
p1(γ1 + ξp1q1) = p2(γ2 + ξp2q2) by condition ηp11 = ηp22 . But this
relation does not imply the existence of λ2 such that

η = exp (ξp1q1 + λ2 ξp2q2) . (8)

Anyway we want to emphasize that formula (8), which is a
particular case of (5) restricted to #W (N(X )) = 2, is true in all
the known monodromic classes as far as we know.
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Conjecture

Clearly N(X ) is not coordinate free, that is, in general
N(X ) ̸= N(ϕ∗X ) for some analytic diffeomorphism ϕ around the
origin of R2. Therefore we establish the following conjecture.

Conjecture

Given any analytic vector field X with a monodromic singular
point, there are analytic coordinates such that the leading
coefficient η of the asymptotic Dulac expansion
Π(x) = ηx + o(x) of the Poincaré map Π has the form (5)
provided ξpiqi exists for all (pi , qi ) ∈ N(X ) and all the vertices of
N(X ) are nondegenerate.
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All the known monodromic classes satisfy the conjecture

The conjecture is true in all the monodromic classes appearing in
the literature.

Theorem

Let X be an analytic planar vector field having a monodromic
singular point at the origin. In the following monodromic classes
formula (5) holds: the Mo(p,q) monodromic class; the S3ω
monodromic class; the G-monodromic class with cubic first
non-vanishing jet; the Mañosa monodromic class; the MΓ

monodromic class where W (N(X )) = {(p1, q1), (p2, q2)} with
q1/p1 < q2/p2 and either q1 and p2 are even or q2 is even, p1 = 1,
and q1 is odd; the MΓ monodromic class when #W (N(X )) ≥ 1
and pi or qi is even for all (pi , qi ) ∈ W (N(X )).
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Example: Mañosa’s monodromic family

Victor Mañosa shows that family

ẋ = xy2 − y3 + ax5, ẏ = 2x7 − x4y + 4xy2 + y3, (9)

has a monodromic singularity at the origin with parameters
Λ = {a ∈ R : ∆(a) := 32− (1 + 3a)2 > 0}. Moreover he proves:

Mañosa’s family in Λ

The origin is always a focus.

Mañosa’s proof:
i) Using the involved blow-up technique The Poincaré map is
Π(x) = η1x + o(x) with

η1 = exp

(
π +

4πa√
∆(a)

)
̸= 1 if a ̸= −31/25. (10)

ii) When a = −31/25 he uses a Lyapunov function.
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The Mañosa monodromic class

The Mañosa monodromic class is characterized by the analytic

vector fields X =
(∑

i+j≥k pi ,jx
iy j
)
∂x +

(∑
i+j≥k qi ,jx

iy j
)
∂y

that satisfy:

(i) In polar coordinates Gr (φ) ≥ 0 with r = k − 1 and
Ω11 = {0, π};

(ii) 0 = qk,0 = qk−1,1 = pk,0 = qk+1,0 = qk+2,0 = qk,1 =
pk+1,0 = qk+3,0;

(iii) Λ(j) := qk−2,2 − jpk−1,1 > 0 with j = 1, 2, 3, and
D := (qk+1,1 − 3pk+2,0)

2 − 4qk+4,0(qk−2,2 − 3pk−1,1) < 0.

The Poincaré return map Π(x) = ηx + o(x) has the coefficient

η = exp(ξ11 +M11), (11)

where ξ11 = PV
∫ 2π
0 Fr (φ)/Gr (φ)dφ, and

M11 = 2π
Λ(3)

Λ(1)

2pk+2,0Λ(3)− pk−1,1(qk+1,1 − 3pk+2,0)

Λ(3)
√
−D

. (12)
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The Mañosa monodromic class

The following proposition is proved for the whole Mañosa
monodromic class.

Proposition

Let X =
(∑

i+j≥k pi ,jx
iy j
)
∂x +

(∑
i+j≥k qi ,jx

iy j
)
∂y be any

analytic planar vector field having a singular point at the origin in
the Mañosa monodromic class. Then N(X ) has two edges with
W (N(X )) = {(1, 1), (1, 3)} and its interior vertex has coefficient
vector (a, b) = (pk−1,1, qk−2,2). Moreover, formula (8) works and
is given by

η = exp

(
ξ11 +

b− 3a

b− a
ξ13

)
, (13)

assuming the flow rotates counterclockwise.
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The Mañosa monodromic class

Doing the trigonometric change of variables φ 7→ m with
m = sinφ/ cos3 φ associated to the weights (1, 3) we can express

ξ13 = PV

∫ 2π

0

Fk+1(φ)

Gk+1(φ)
dφ = PV

∫ 2π

0

A(φ)

cosφB(φ)
dφ

= 2PV

∫ ∞

−∞
R(m) dm

where R is given by the rational function

R(m) =
pk−1,1m + pk+2,0

(qk−2,2 − 3pk−1,1)m2 + (qk+1,1 − 3pk+2,0)m + qk+4,0
.
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The Mañosa monodromic class

The integral appearing in the last expression of ξ13 can be
computed and gives

ξ13 = 2π
2pk+2,0(qk−2,2 − 3pk−1,1)− pk−1,1(qk+1,1 − 3pk+2,0)

(qk−2,2 − 3pk−1,1)
√

4qk+4,0(qk−2,2 − 3pk−1,1)− (qk+1,1 − 3pk+2,0)2
,

in agreement with equation (12) of work of Mañosa.

Recall that η = exp(ξ11 +M11) by (11) where M11 is defined in
(12). It is easy to see that

M11 =
b− 3a

b− a
ξ13,

finishing the proof.
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