On the distribution of the zeros of some polynomial maps $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

Jaume Llibre
Universitat Autònoma de Barcelona

Lleida, January 11, 2024
This is a joint work with Claudia Valls

Chavarriga 1997

Chavarriga 1997

Chavarriga-Giné 1999

Chavarriga 1997

Chavarriga-Giné 1999
Chavarriga 2005

Chavarriga 1997

Chavarriga-Giné 1999
Chavarriga 2005
Giné-Garcia-Grau 2010

Chavarriga 1997
Chavarriga-Giné 1999
Chavarriga 2005
Giné-Garcia-Grau 2010
Giné-Garcia-Grau-Maza 2012

Chavarriga 1997
Chavarriga-Giné 1999
Chavarriga 2005
Giné-Garcia-Grau 2010
Giné-Garcia-Grau-Maza 2012
Up to now with Jaume Giné up we have published together 60 papers.

Consider two polynomials $P(x, y)$ and $Q(x, y)$ with real coefficients of degrees n and m respectively with $m \geq n$.

Consider two polynomials $P(x, y)$ and $Q(x, y)$ with real coefficients of degrees n and m respectively with $m \geq n$.

Then we say that the polynomial map $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has degree (n, m).

Consider two polynomials $P(x, y)$ and $Q(x, y)$ with real coefficients of degrees n and m respectively with $m \geq n$.

Then we say that the polynomial map $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has degree (n, m).

We assume that the map (P, Q) has exactly $n m$ different real zeros.

Consider two polynomials $P(x, y)$ and $Q(x, y)$ with real coefficients of degrees n and m respectively with $m \geq n$.

Then we say that the polynomial map $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ has degree (n, m).

We assume that the map (P, Q) has exactly $n m$ different real zeros.

The objective of the paper is to study the distribution of the $n m$ zeros of the map (P, Q) in the plane \mathbb{R}^{2} when $n=1,2,3$ and $m \leq 4$.

We introduce some notations and definitions.

We introduce some notations and definitions.
Given a finite subset A of points of \mathbb{R}^{2}, we denote by $\hat{A}, \partial \hat{A}$ and $\# A$ its convex hull, the boundary of the convex hull, and its cardinal, respectively.

We introduce some notations and definitions.
Given a finite subset A of points of \mathbb{R}^{2}, we denote by $\hat{A}, \partial \hat{A}$ and $\# A$ its convex hull, the boundary of the convex hull, and its cardinal, respectively.

We denote by A the set of $n m$ zeros of the map (P, Q).

We denote by A the set of $n m$ zeros of the map (P, Q).
We denote by $p_{A}(B)$ the set of points of A contained in the set B.

We denote by A the set of $n m$ zeros of the map (P, Q).
We denote by $p_{A}(B)$ the set of points of A contained in the set B.

Set $A_{0}=p_{A}(\partial \hat{A})$

We denote by A the set of $n m$ zeros of the map (P, Q).
We denote by $p_{A}(B)$ the set of points of A contained in the set B.

Set $A_{0}=p_{A}(\partial \hat{A})$
$A_{1}=p_{A}\left(\partial\left(\widehat{\boldsymbol{A} \backslash A_{0}}\right)\right.$

We denote by A the set of $n m$ zeros of the map (P, Q).
We denote by $p_{A}(B)$ the set of points of A contained in the set B.

Set $A_{0}=p_{A}(\partial \hat{A})$
$A_{1}=p_{A}\left(\partial\left(\widehat{\boldsymbol{A} \backslash A_{0}}\right)\right.$
$A_{2}=p_{A}\left(\partial\left(A \backslash \widehat{\left(A_{0} \cup\right.} A_{1}\right)\right)$ and

We denote by A the set of $n m$ zeros of the map (P, Q).
We denote by $p_{A}(B)$ the set of points of A contained in the set B.

Set $A_{0}=p_{A}(\partial \hat{A})$
$A_{1}=p_{A}\left(\partial\left(\widehat{\boldsymbol{A} \backslash A_{0}}\right)\right.$
$A_{2}=p_{A}\left(\partial\left(A \backslash \widehat{\left(A_{0} \cup A_{1}\right)}\right)\right.$ and
$A_{i}=p_{A}\left(\partial\left(A \backslash\left(A_{0} \widehat{\cup} \cup A_{i-1}\right)\right)\right)$ for $i \geq 3$.

We denote by A the set of $n m$ zeros of the map (P, Q).
We denote by $p_{A}(B)$ the set of points of A contained in the set B.

Set $A_{0}=p_{A}(\partial \hat{A})$
$A_{1}=p_{A}\left(\partial\left(\widehat{\boldsymbol{A} \backslash A_{0}}\right)\right.$
$A_{2}=p_{A}\left(\partial\left(A \backslash \widehat{\left(A_{0} \cup A_{1}\right)}\right)\right.$ and
$A_{i}=p_{A}\left(\partial\left(A \backslash\left(A_{0} \widehat{\cup \ldots} \cup A_{i-1}\right)\right)\right)$ for $i \geq 3$.
Note that there exists a non-negative integer q such that $A_{q} \neq \emptyset$ and $A_{q+1}=\emptyset$.

We say that A has the distribution of zeros $\left(K_{0} ; K_{1} ; K_{2} ; \ldots ; K_{q}\right)$ if $K_{i}=\# A_{i}$.

We say that A has the distribution of zeros $\left(K_{0} ; K_{1} ; K_{2} ; \ldots ; K_{q}\right)$ if $K_{i}=\# A_{i}$.

We also say that the zeros of (P, Q) belonging to A_{i} are on the i-th level.

THEOREM Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros with $n=1,2,3$ and $m \leq 4$. The distribution of the zeros of the map (P, Q) is:
(a) (m) if $(n, m)=(1, m)$.

THEOREM Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros with $n=1,2,3$ and $m \leq 4$. The distribution of the zeros of the map (P, Q) is:
(a) (m) if $(n, m)=(1, m)$.
(b) (4) and $(3 ; 1)$ if $(n, m)=(2,2)$.

THEOREM Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros with $n=1,2,3$ and $m \leq 4$. The distribution of the zeros of the map (P, Q) is:
(a) (m) if $(n, m)=(1, m)$.
(b) (4) and $(3 ; 1)$ if $(n, m)=(2,2)$.
(c) $(6),(4 ; 2)$ and $(3 ; 3)$ if $(n, m)=(2,3)$.

THEOREM Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros with $n=1,2,3$ and $m \leq 4$. The distribution of the zeros of the map (P, Q) is:
(a) (m) if $(n, m)=(1, m)$.
(b) (4) and $(3 ; 1)$ if $(n, m)=(2,2)$.
(c) $(6),(4 ; 2)$ and $(3 ; 3)$ if $(n, m)=(2,3)$.
(d) $(8),(5 ; 3),(4 ; 4),(4 ; 3 ; 1)$ and $(3 ; 5)$ if $(n, m)=(2,4)$.

THEOREM Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros with $n=1,2,3$ and $m \leq 4$. The distribution of the zeros of the map (P, Q) is:
(a) (m) if $(n, m)=(1, m)$.
(b) (4) and $(3 ; 1)$ if $(n, m)=(2,2)$.
(c) $(6),(4 ; 2)$ and $(3 ; 3)$ if $(n, m)=(2,3)$.
(d) $(8),(5 ; 3),(4 ; 4),(4 ; 3 ; 1)$ and $(3 ; 5)$ if $(n, m)=(2,4)$.
(e) $(9),(8 ; 1),(7 ; 2),(6 ; 3),(5 ; 4),(5 ; 3 ; 1),(4 ; 5) ;(4 ; 4 ; 1)$, $(4 ; 3 ; 2),(3 ; 6),(3 ; 5 ; 1),(3 ; 4 ; 2)$ and $(3 ; 3 ; 3)$ if $(n, m)=(3,3)$.
(f) $(12),(11 ; 1),(10 ; 2),(9 ; 3),(8 ; 4),(8 ; 3 ; 1),(7 ; 5),(7 ; 4 ; 1)$, $(7 ; 3 ; 2),(6 ; 6),(6 ; 5 ; 1),(6 ; 4 ; 2),(6 ; 3 ; 3),(5 ; 7),(5 ; 6 ; 1)$, $(5 ; 5 ; 2),(5 ; 4 ; 3),(5 ; 3 ; 4),(5 ; 3 ; 3 ; 1),(4 ; 8),(4 ; 7 ; 1)$, $(4 ; 6 ; 2),(4 ; 5 ; 3),(4 ; 4 ; 4),(4 ; 4 ; 3 ; 1),(4 ; 3 ; 5),(4 ; 3 ; 4 ; 1)$,
$(4 ; 3 ; 3 ; 2),(3 ; 9),(3 ; 8 ; 1),(3 ; 7 ; 2),(3 ; 6 ; 3),(3 ; 5 ; 4)$,
$(3 ; 5 ; 3 ; 1),(3 ; 4 ; 5),(3 ; 4 ; 4 ; 1),(3 ; 4 ; 3 ; 2),(3 ; 3 ; 6)$,
$(3 ; 3 ; 5 ; 1)$, $(3 ; 3 ; 4 ; 2)$ and $(3 ; 3 ; 3 ; 3)$ if $(n, m)=(3,4)$.
Moreover there exist examples of such maps whose zeros have these distributions.
(b) The distribution of the zeros of the map (P, Q) is (4) and $(3 ; 1)$ if $(n, m)=(2,2)$
(b) The distribution of the zeros of the map (P, Q) is (4) and $(3 ; 1)$ if $(n, m)=(2,2)$

As we shall see statement (b) follows from the Berlinskii Theorem.
(b) The distribution of the zeros of the map (P, Q) is (4) and $(3 ; 1)$ if $(n, m)=(2,2)$

As we shall see statement (b) follows from the Berlinskii Theorem.
A. N. Berlinskii, On the behavior of the integral curves of a differential equation, Izv. Vyssh. Uchebn. Zaved. Mat. 2 (1960), 3-18.
(b) The distribution of the zeros of the map (P, Q) is (4) and $(3 ; 1)$ if $(n, m)=(2,2)$

As we shall see statement (b) follows from the Berlinskii Theorem.
A. N. Berlinskii, On the behavior of the integral curves of a differential equation, Izv. Vyssh. Uchebn. Zaved. Mat. 2 (1960), 3-18.
A. Cima, A. Gasull and F. Mañosas, Some applications of the Euler-Jacobi formula to differential equations, Proc. Amer. Math. 118 (1993), 151-163.

The tools for proving the THEOREM are:

1) The Euler-Jacobi formula.

The tools for proving the THEOREM are:

1) The Euler-Jacobi formula.

Under the assumptions of the THEOREM,

The tools for proving the THEOREM are:

1) The Euler-Jacobi formula.

Under the assumptions of the THEOREM, i.e. Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros and $m \geq n$.

The tools for proving the THEOREM are:

1) The Euler-Jacobi formula.

Under the assumptions of the THEOREM, i.e. Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros and $m \geq n$. Then the Jacobian determinant

$$
J=\left\lvert\, \begin{array}{ll}
\partial P / \partial x & \partial P / \partial y \\
\partial Q / \partial x & \partial Q / \partial y
\end{array}\right.
$$

evaluated at each zero does not vanish,

The tools for proving the THEOREM are:

1) The Euler-Jacobi formula.

Under the assumptions of the THEOREM, i.e. Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros and $m \geq n$. Then the Jacobian determinant

$$
J=\left\lvert\, \begin{array}{ll}
\partial P / \partial x & \partial P / \partial y \\
\partial Q / \partial x & \partial Q / \partial y
\end{array}\right.
$$

evaluated at each zero does not vanish, and for any polynomial R of degree $\leq m-1$ we have

$$
\sum_{a \in A} \frac{R(a)}{J(a)}=0
$$

where A is the set of the $n m$ zeros of the polynomial map $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. This is the Euler-Jacobi formula.

2) The topological index.

2) The topological index.

If $\# A=m n$ then the Jacobian determinant J is non-zero at any zero of system $P(x, y)=Q(x, y)=0$,
2) The topological index.

If $\# A=m n$ then the Jacobian determinant J is non-zero at any zero of system $P(x, y)=Q(x, y)=0$, and the topological index of that zero as an equilibrium point of the differential system $\dot{x}=P(x, y), \dot{y}=Q(x, y)$ is 1 (respectively -1) if $J>0$ (respectively $J<0$).
2) The topological index.

If $\# A=m n$ then the Jacobian determinant J is non-zero at any zero of system $P(x, y)=Q(x, y)=0$, and the topological index of that zero as an equilibrium point of the differential system $\dot{x}=P(x, y), \dot{y}=Q(x, y)$ is 1 (respectively -1) if $J>0$ (respectively $J<0$).
3) The following results of Khovanskii
2) The topological index.

If $\# A=m n$ then the Jacobian determinant J is non-zero at any zero of system $P(x, y)=Q(x, y)=0$, and the topological index of that zero as an equilibrium point of the differential system $\dot{x}=P(x, y), \dot{y}=Q(x, y)$ is 1 (respectively -1) if $J>0$ (respectively $J<0$).
3) The following results of Khovanskii

If $\# A=m n$ then
$\left|\sum_{a \in A} i(a)\right| \leq \min (n, m)$
2) The topological index.

If $\# A=m n$ then the Jacobian determinant J is non-zero at any zero of system $P(x, y)=Q(x, y)=0$, and the topological index of that zero as an equilibrium point of the differential system $\dot{x}=P(x, y), \dot{y}=Q(x, y)$ is 1 (respectively -1) if $J>0$ (respectively $J<0$).
3) The following results of Khovanskii

If $\# A=m n$ then
$\left|\sum_{a \in A} i(a)\right| \leq \min (n, m)$
$\left|\sum_{a \in A} i(a)\right| \equiv n m(\bmod , 2)$
2) The topological index.

If $\# A=m n$ then the Jacobian determinant J is non-zero at any zero of system $P(x, y)=Q(x, y)=0$, and the topological index of that zero as an equilibrium point of the differential system $\dot{x}=P(x, y), \dot{y}=Q(x, y)$ is 1 (respectively -1) if $J>0$ (respectively $J<0$).
3) The following results of Khovanskii

If $\# A=m n$ then
$\left|\sum_{a \in A} i(a)\right| \leq \min (n, m)$
$\left|\sum_{a \in A} i(a)\right| \equiv n m(\bmod , 2)$
$\sum_{a \in A} i(a)=0$ if $n \not \equiv m(\bmod , 2)$
2) The topological index.

If $\# A=m n$ then the Jacobian determinant J is non-zero at any zero of system $P(x, y)=Q(x, y)=0$, and the topological index of that zero as an equilibrium point of the differential system $\dot{x}=P(x, y), \dot{y}=Q(x, y)$ is 1 (respectively -1) if $J>0$ (respectively $J<0$).
3) The following results of Khovanskii

If $\# A=m n$ then
$\left|\sum_{a \in A} i(a)\right| \leq \min (n, m)$
$\left|\sum_{a \in A} i(a)\right| \equiv n m(\bmod , 2)$
$\sum_{a \in A} i(a)=0$ if $n \not \equiv m(\bmod , 2)$
4) Let $X=(P, Q)$ be a polynomial vector field of degree n. If X has $n+1$ equilibrium points on a straight line then this line is full of equilibrium points.

THEOREM Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros with $n=1,2,3$ and $m \leq 4$. The distribution of the zeros of the map (P, Q) is:
(a) (m) if $(n, m)=(1, m)$.

THEOREM Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros with $n=1,2,3$ and $m \leq 4$. The distribution of the zeros of the map (P, Q) is:
(a) (m) if $(n, m)=(1, m)$.
(b) (4) and $(3 ; 1)$ if $(n, m)=(2,2)$.

THEOREM Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros with $n=1,2,3$ and $m \leq 4$. The distribution of the zeros of the map (P, Q) is:
(a) (m) if $(n, m)=(1, m)$.
(b) (4) and $(3 ; 1)$ if $(n, m)=(2,2)$.
(c) $(6),(4 ; 2)$ and $(3 ; 3)$ if $(n, m)=(2,3)$.

THEOREM Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros with $n=1,2,3$ and $m \leq 4$. The distribution of the zeros of the map (P, Q) is:
(a) (m) if $(n, m)=(1, m)$.
(b) (4) and $(3 ; 1)$ if $(n, m)=(2,2)$.
(c) $(6),(4 ; 2)$ and $(3 ; 3)$ if $(n, m)=(2,3)$.
(d) $(8),(5 ; 3),(4 ; 4),(4 ; 3 ; 1)$ and $(3 ; 5)$ if $(n, m)=(2,4)$.

THEOREM Let $(P, Q): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a polynomial map of degree (n, m) with exactly $n m$ different zeros with $n=1,2,3$ and $m \leq 4$. The distribution of the zeros of the map (P, Q) is:
(a) (m) if $(n, m)=(1, m)$.
(b) (4) and $(3 ; 1)$ if $(n, m)=(2,2)$.
(c) $(6),(4 ; 2)$ and $(3 ; 3)$ if $(n, m)=(2,3)$.
(d) $(8),(5 ; 3),(4 ; 4),(4 ; 3 ; 1)$ and $(3 ; 5)$ if $(n, m)=(2,4)$.
(e) $(9),(8 ; 1),(7 ; 2),(6 ; 3),(5 ; 4),(5 ; 3 ; 1),(4 ; 5) ;(4 ; 4 ; 1)$, $(4 ; 3 ; 2),(3 ; 6),(3 ; 5 ; 1),(3 ; 4 ; 2)$ and $(3 ; 3 ; 3)$ if $(n, m)=(3,3)$.
(f) $(12),(11 ; 1),(10 ; 2),(9 ; 3),(8 ; 4),(8 ; 3 ; 1),(7 ; 5),(7 ; 4 ; 1)$, $(7 ; 3 ; 2),(6 ; 6),(6 ; 5 ; 1),(6 ; 4 ; 2),(6 ; 3 ; 3),(5 ; 7),(5 ; 6 ; 1)$, $(5 ; 5 ; 2),(5 ; 4 ; 3),(5 ; 3 ; 4),(5 ; 3 ; 3 ; 1),(4 ; 8),(4 ; 7 ; 1)$, $(4 ; 6 ; 2),(4 ; 5 ; 3),(4 ; 4 ; 4),(4 ; 4 ; 3 ; 1),(4 ; 3 ; 5),(4 ; 3 ; 4 ; 1)$,
$(4 ; 3 ; 3 ; 2),(3 ; 9),(3 ; 8 ; 1),(3 ; 7 ; 2),(3 ; 6 ; 3),(3 ; 5 ; 4)$,
$(3 ; 5 ; 3 ; 1),(3 ; 4 ; 5),(3 ; 4 ; 4 ; 1),(3 ; 4 ; 3 ; 2),(3 ; 3 ; 6)$,
$(3 ; 3 ; 5 ; 1)$, $(3 ; 3 ; 4 ; 2)$ and $(3 ; 3 ; 3 ; 3)$ if $(n, m)=(3,4)$.
Moreover there exist examples of such maps whose zeros have these distributions.

We shall prove statement (b) of the Theorem, i.e. (4) and (3; 1) if $(n, m)=(2,2)$.

We shall prove statement (b) of the Theorem, i.e. (4) and (3; 1) if $(n, m)=(2,2)$.

Berlinskii's THEOREM. For planar quadratic polynomial differential systems such that $\# A=4$ the following statements hold:
(a) $\sum_{a \in A} i(a)=0$ or $\left|\sum_{a \in A} i(a)\right|=2$.

We shall prove statement (b) of the Theorem, i.e. (4) and (3; 1) if $(n, m)=(2,2)$.

Berlinskii's THEOREM. For planar quadratic polynomial differential systems such that $\# A=4$ the following statements hold:
(a) $\sum_{a \in A} i(a)=0$ or $\left|\sum_{a \in A} i(a)\right|=2$.
(b) If $\sum_{a \in A} i(a)=0$ there is only the configuration

$$
\text { (4) }=(+,-,+,-) \text {. }
$$

We shall prove statement (b) of the Theorem, i.e. (4) and (3; 1) if $(n, m)=(2,2)$.

Berlinskii's THEOREM. For planar quadratic polynomial differential systems such that $\# A=4$ the following statements hold:
(a) $\sum_{a \in A} i(a)=0$ or $\left|\sum_{a \in A} i(a)\right|=2$.
(b) If $\sum_{a \in A} i(a)=0$ there is only the configuration $(4)=(+,-,+,-)$.
(c) If $\left|\sum_{a \in A} i(a)\right|=2$ there are only the two configurations $(3 ; 1)$ with either $(3+,-)$ or $(3-,+)$.
There exist examples of quadratic polynomial differential systems with such configurations.

PROOF OF $(\mathrm{a}): \sum_{a \in A} i(a)=0$ or $\left|\sum_{a \in A} i(a)\right|=2$.

PROOF OF (a): $\sum_{a \in A} i(a)=0$ or $\left|\sum_{a \in A} i(a)\right|=2$.
From $\left|\sum_{a \in A} i(a)\right| \leq \min (n, m)$ we have that $\left|\sum_{a \in A} i(a)\right| \leq 2$ because $m=n=2$.

PROOF OF $(\mathrm{a}): \sum_{a \in A} i(a)=0$ or $\left|\sum_{a \in A} i(a)\right|=2$.
From $\left|\sum_{a \in A} i(a)\right| \leq \min (n, m)$ we have that $\left|\sum_{a \in A} i(a)\right| \leq 2$ because $m=n=2$.

From $\left|\sum_{a \in A} i(a)\right| \equiv n m(\bmod , 2)$ we have that $\left|\sum_{a \in A} i(a)\right| \equiv 0(\bmod , 2)$ because $m=n=2$.

PROOF OF $(\mathrm{a}): \sum_{a \in A} i(a)=0$ or $\left|\sum_{a \in A} i(a)\right|=2$.
From $\left|\sum_{a \in A} i(a)\right| \leq \min (n, m)$ we have that $\left|\sum_{a \in A} i(a)\right| \leq 2$ because $m=n=2$.

From $\left|\sum_{a \in A} i(a)\right| \equiv n m(\bmod , 2)$ we have that $\left|\sum_{a \in A} i(a)\right| \equiv 0(\bmod , 2)$ because $m=n=2$.

So (a) is proved.

PROOF OF (b) : If $\sum_{a \in A} i(a)=0$ there is only the configuration
$(4)=(+,-,+,-)$.

PROOF OF (b): If $\sum_{a \in A} i(a)=0$ there is only the configuration (4) $=(+,-,+,-)$.
$\sum_{a \in A} i(a)=0$ implies that two equilibrium points have index -1 and the other two +1 .

PROOF OF (b): If $\sum_{a \in A} i(a)=0$ there is only the configuration (4) $=(+,-,+,-)$.
$\sum_{a \in A} i(a)=0$ implies that two equilibrium points have index -1 and the other two +1 . Denote these four equilibria as P_{1}^{+}, P_{2}^{+}, P_{1}^{-}, P_{2}^{-}.

PROOF OF (b): If $\sum_{a \in A} i(a)=0$ there is only the configuration (4) $=(+,-,+,-)$.
$\sum_{a \in A} i(a)=0$ implies that two equilibrium points have index -1 and the other two +1 . Denote these four equilibria as P_{1}^{+}, P_{2}^{+}, P_{1}^{-}, P_{2}^{-}.
From 4) three of these four equilibria cannot be on a straight line.

PROOF OF (b): If $\sum_{a \in A} i(a)=0$ there is only the configuration (4) $=(+,-,+,-)$.
$\sum_{a \in A} i(a)=0$ implies that two equilibrium points have index -1 and the other two +1 . Denote these four equilibria as P_{1}^{+}, P_{2}^{+}, P_{1}^{-}, P_{2}^{-}.
From 4) three of these four equilibria cannot be on a straight line.

Recall the Euler-Jacobi Formula: For any polynomial R of degree $\leq m-1$ we have

$$
\sum_{a \in A} \frac{R(a)}{J(a)}=0,
$$

PROOF OF (b): If $\sum_{a \in A} i(a)=0$ there is only the configuration (4) $=(+,-,+,-)$.
$\sum_{a \in A} i(a)=0$ implies that two equilibrium points have index -1 and the other two +1 . Denote these four equilibria as P_{1}^{+}, P_{2}^{+}, P_{1}^{-}, P_{2}^{-}.

From 4) three of these four equilibria cannot be on a straight line.

Recall the Euler-Jacobi Formula: For any polynomial R of degree $\leq m-1$ we have

$$
\sum_{a \in A} \frac{R(a)}{J(a)}=0,
$$

Apply this formula being the polynomial R the straight line through the points P_{1}^{+}and P_{2}^{+}:

$$
\frac{R\left(P_{1}^{-}\right)}{J\left(P_{1}^{-}\right)}+\frac{R\left(P_{2}^{-}\right)}{J\left(P_{2}^{-}\right)}=0 .
$$

$$
\frac{R\left(P_{1}^{-}\right)}{J\left(P_{1}^{-}\right)}+\frac{R\left(P_{2}^{-}\right)}{J\left(P_{2}^{-}\right)}=0 .
$$

Since $J\left(P_{1}^{-}\right)<0$ and $J\left(P_{2}^{-}\right)<0$ we have that $R\left(P_{1}^{-}\right) R\left(P_{2}^{-}\right)<0$,

$$
\frac{R\left(P_{1}^{-}\right)}{J\left(P_{1}^{-}\right)}+\frac{R\left(P_{2}^{-}\right)}{J\left(P_{2}^{-}\right)}=0 .
$$

Since $J\left(P_{1}^{-}\right)<0$ and $J\left(P_{2}^{-}\right)<0$ we have that $R\left(P_{1}^{-}\right) R\left(P_{2}^{-}\right)<0$, so the points P_{1}^{-}and P_{2}^{-}are in distinct sides of the straight line R.

$$
\frac{R\left(P_{1}^{-}\right)}{J\left(P_{1}^{-}\right)}+\frac{R\left(P_{2}^{-}\right)}{J\left(P_{2}^{-}\right)}=0 .
$$

Since $J\left(P_{1}^{-}\right)<0$ and $J\left(P_{2}^{-}\right)<0$ we have that $R\left(P_{1}^{-}\right) R\left(P_{2}^{-}\right)<0$, so the points P_{1}^{-}and P_{2}^{-}are in distinct sides of the straight line R. But this does not guarantee that the convex hull of the four equilibrium points be a convex quadrilateral.

$$
\frac{R\left(P_{1}^{-}\right)}{J\left(P_{1}^{-}\right)}+\frac{R\left(P_{2}^{-}\right)}{J\left(P_{2}^{-}\right)}=0 .
$$

Since $J\left(P_{1}^{-}\right)<0$ and $J\left(P_{2}^{-}\right)<0$ we have that $R\left(P_{1}^{-}\right) R\left(P_{2}^{-}\right)<0$, so the points P_{1}^{-}and P_{2}^{-}are in distinct sides of the straight line R. But this does not guarantee that the convex hull of the four equilibrium points be a convex quadrilateral.

Now apply the Euler-Jacobi Formula being the polynomial R the straight line through the points P_{1}^{+}and P_{1}^{-}:

$$
\frac{R\left(P_{2}^{+}\right)}{J\left(P_{2}^{+}\right)}+\frac{R\left(P_{2}^{-}\right)}{J\left(P_{2}^{-}\right)}=0 .
$$

$$
\frac{R\left(P_{2}^{+}\right)}{J\left(P_{2}^{+}\right)}+\frac{R\left(P_{2}^{-}\right)}{J\left(P_{2}^{-}\right)}=0 .
$$

Since $J\left(P_{2}^{+}\right)>0$ and $J\left(P_{2}^{-}\right)<0$ it follows that $R\left(P_{2}^{+}\right) R\left(P_{2}^{-}\right)>0$,

$$
\frac{R\left(P_{2}^{+}\right)}{J\left(P_{2}^{+}\right)}+\frac{R\left(P_{2}^{-}\right)}{J\left(P_{2}^{-}\right)}=0 .
$$

Since $J\left(P_{2}^{+}\right)>0$ and $J\left(P_{2}^{-}\right)<0$ it follows that $R\left(P_{2}^{+}\right) R\left(P_{2}^{-}\right)>0$, hence the points P_{2}^{+}and P_{2}^{-}are in the same side of the straight line R.

$$
\frac{R\left(P_{2}^{+}\right)}{J\left(P_{2}^{+}\right)}+\frac{R\left(P_{2}^{-}\right)}{J\left(P_{2}^{-}\right)}=0 .
$$

Since $J\left(P_{2}^{+}\right)>0$ and $J\left(P_{2}^{-}\right)<0$ it follows that $R\left(P_{2}^{+}\right) R\left(P_{2}^{-}\right)>0$, hence the points P_{2}^{+}and P_{2}^{-}are in the same side of the straight line R. This implies that the convex hull of the four equilibria is a convex quadriateral.

$$
\frac{R\left(P_{2}^{+}\right)}{J\left(P_{2}^{+}\right)}+\frac{R\left(P_{2}^{-}\right)}{J\left(P_{2}^{-}\right)}=0 .
$$

Since $J\left(P_{2}^{+}\right)>0$ and $J\left(P_{2}^{-}\right)<0$ it follows that $R\left(P_{2}^{+}\right) R\left(P_{2}^{-}\right)>0$, hence the points P_{2}^{+}and P_{2}^{-}are in the same side of the straight line R. This implies that the convex hull of the four equilibria is a convex quadrilateral. Therefore statement (b) of the Berlinskii's Theorem is proved.

$$
\frac{R\left(P_{2}^{+}\right)}{J\left(P_{2}^{+}\right)}+\frac{R\left(P_{2}^{-}\right)}{J\left(P_{2}^{-}\right)}=0 .
$$

Since $J\left(P_{2}^{+}\right)>0$ and $J\left(P_{2}^{-}\right)<0$ it follows that $R\left(P_{2}^{+}\right) R\left(P_{2}^{-}\right)>0$, hence the points P_{2}^{+}and P_{2}^{-}are in the same side of the straight line R. This implies that the convex hull of the four equilibria is a convex quadrilateral. Therefore statement (b) of the Berlinskii's Theorem is proved.

Similar arguments prove statement (c) of the Berlinskii's Theorem.

THANK YOU VERY MUCH FOR YOUR ATTENTION

